首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the relationships between testis weight and the luteinizing hormone (LH) and testosterone releases in rams subjected to 14 successive 2-mo artificial light cycles in which daylength increased from 8 to 16 h in one month and decreased from 16 to 8 h the following month. Testis weights were measured fortnightly. Serial bleedings were performed during 6 to 8 h the last three 2-mo light cycles, when daylengths were 8, 12 (increasing), 16 and 12 h (decreasing) and plasma LH and testosterone were measured by radioimmunoassay. The overall mean testis weight, continuously high and equal to 314 g per testis, was not correlated with daylength. Mean LH levels and LH pulse height varied significantly according to daylength (P < 0.05 and P < 0.01, respectively) and were maximal on short days (8 h). Both mean and maximal testosterone levels presented variations according to daylength (P = 0.05). LH and testosterone pulsatility were quite high (equivalent to 7 to 10.3 pulses/day); however, mean plasma testosterone levels remained low. It is proposed that in rams under 2-mo light cycles, frequent but short stimulation of LH release by decreasing daylength phases allows maximal testis weight, while the interruption of LH stimulation by increasing daylengths prevents overstimulation of testosterone that can inhibit the LH release by negative feedback. Rams a under 2-mo light regimen presented a persistent high testis weight, indicating that seasonality had been broken down in the Ile-de-France male which is normally a marked seasonal breeder.  相似文献   

2.
The physiological responses of luteinizing hormone, testosterone and cortisol in sexually experienced Ile de France rams to the introduction of estrous females were studied during the nonbreeding season. Blood sampling were collected from males for 7 h at 20-min intervals, starting 3 h before stimulation by estrous females. The differences in hormonal secretions were tested by comparisons between pretreatment and treatment Periods in 45 stimulated rams. Comparisons were conducted between rams that had increased LH pulse frequency and those that did not, between rams that ejaculated and those that did not, and between rams that were in direct physical contact and those that were kept at a distance of 30 cm from estrous females. Twenty-five rams (55% of the total) showed significant increases in LH pulse frequency (range, 0.80 to 4.00 peaks/ram/6 h, P<0.05), in basal and mean LH levels (1.5- and 2.5-fold, respectively), and in mean testosterone levels (3.5-fold). More frequent LH pulses had been found during the pretreatment period in 20 rams without increased LH pulse frequency. Eight ejaculating rams showed higher cortisol and mean, basal, and peak LH amplitude levels. Deprivation of physical contact with estrous females was associated with an absence of endocrine response. These results suggest that olfactory and/or tactile cues may be involved in the female effect on hormone levels.  相似文献   

3.
Price CA 《Theriogenology》1994,41(2):471-482
The hypothesis that testosterone and inhibin interact in the control of FSH secretion in rams was tested. Adult rams were castrated and were simultaneously given testosterone implants and 3-times daily sc injections of 0, 0.4, 0.8 or 1.6 ml charcoal-treated bovine follicular fluid (bFF). After 1 wk, the implants were removed, and the bFF injections continued as before. Blood samples were taken daily for mean LH, FSH and testosterone concentrations, and every 10 min for 12 h in the presence and in the absence of testosterone for assessment of pulsatile LH release. The bFF specifically inhibited FSH secretion from rat pituitary cells in culture. In the presence of testosterone, there were no main effects of bFF on mean plasma FSH or LH concentrations, nor were these values different from their pre-treatment means (P>0.05). Treatment with bFF did not affect LH pulse frequency or amplitude, but the number of rams showing LH pulses was reduced in the 0.8 and 1.6-ml dose groups (P<0.05). Removal of testosterone increased (P<0.05) both gonadotropins. In the absence of testosterone, no main effect of bFF on mean LH or FSH concentrations was observed, although the 1.6-ml dose suppressed the postcastration rise of both LH and FSH. These data suggest that inhibin does not interact with testosterone and that a physiological level of testosterone is sufficient for the regulation of FSH secretion in adult rams.  相似文献   

4.
Pituitary and testicular endocrine responses to exogenous gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH), respectively, were assessed for adult rams in an investigation of the regulation of seasonal changes in the patterns of episodic LH and testosterone secretion. Concurrent variations in testis size and in circulating levels of follicle stimulating hormone (FSH) and prolactin (PRL) were also examined. On 10 occasions throughout the year, serum hormone levels were assessed over 6- to 8-h periods during which time rams were left untreated (day 1) or were injected (iv) with single doses of either 10 micrograms synthetic GnRH (day 2) or 30 micrograms NIH-LH-S18 (day 3); blood samples were collected from the jugular vein at 10- to 20-min intervals. Testicular redevelopment during the summer, as indicated by increasing testis diameter measurements, was associated with increases in mean FSH level and was preceded by a springtime rise in mean PRL level; "spontaneously" occurring LH pulses and those produced in response to GnRH treatment were relatively large during this period. Increases in the magnitude of testosterone elevations in response to both endogenously and exogenously produced LH pulses occurred in August. Mean testosterone levels were elevated fourfold in the fall as a consequence of relatively frequent and small LH pulses stimulating a more responsive testis to produce more frequent and larger testosterone elevations; endogenous LH pulses, however, did not appear to stimulate the testes maximally at this time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

6.
Blood from stages aged 15 months (n = 6) was sampled at monthly intervals every 30 min for 24 h for 12 months, at 45 degrees S in New Zealand. Three extra samplings each for 24 h were carried out at about the anticipated time of antler casting. All samples were analysed for luteinizing hormone (LH) and testosterone and the resulting data further analysed by the Pulsar pulse detection routine. The animals were kept indoors under natural daylength and were fed ad libitum. All animals were weighed, antler status and size recorded and testes diameter was measured on each sampling day. Mean LH and testosterone pulsatily and plasma concentration varied seasonally. LH pulse frequency was low during autumn (2.5 pulses in 24 h), winter (1.0-1.5 pulses in 24 h) and early spring (1 pulse in 24 h) and lowest in late spring (0.2 pulse in 24 h) before rising in summer (1.0-4.0 pulses in 24 h). LH pulse amplitude and mean plasma concentration were low (< 1 ng ml-1) from March to November (autumn-spring); both rose to a peak in January (summer) of 3.4 and 1.6 ng ml-1, respectively. Testosterone pulse frequency was generally similar to LH except that slightly more pulses of testosterone than of LH were detected from March to November and more pulses of LH from November to February (summer). Testosterone pulse amplitude fell from March to November (5.3 ng ml-1 to undetectable) although there was a conspicuous peak in July (midwinter) of almost 5 ng ml-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study tested a hypothesis that the enhancement of the prolactin (PRL) concentration within the central nervous system (CNS) disturbs pulsatile luteinizing hormone (LH) and growth hormone (GH) secretion in rams that are in the natural breeding season. A 3h long intracerebroventricular (icv.) infusion of ovine PRL (50 microg/100 microl/h) was made in six rams during the daily period characterized by low PRL secretion in this species (from 12:00 to 15:00 h); the other six animals received control infusions during the same time. Blood samples were collected from 9:00 to 18:00 h at 10 min intervals. A clear daily pattern of LH secretion was shown in control animals, with the lowest concentration at noon and an increasing basal level around the time of sunset (P < 0.001). No significant changes in LH concentration occurred in PRL-infused animals and the concentration noted after infusion of PRL was significantly (P < 0.05) lower than after the control infusion. The frequency of LH pulses tended to decrease in rams after PRL treatment. The changes in LH secretion clearly carried over to the secretion of testosterone in the rams of both groups. The GH concentrations changed throughout the experiment in both groups of rams, being higher after the infusions (P < 0.001). However, the mean GH concentration and GH pulse amplitude noted after PRL infusion were significantly lower (P < 0.001 and P < 0.05, respectively) from those recorded in the control. The continued fall in PRL secretion observed in rams following PRL infusion (P < 0.05 to P < 0.001) indicates a high degree of effectiveness of exogenous PRL at the level of the CNS. In conclusion, maintenance of an elevated PRL concentration within the CNS leads to disturbances in the neuroendocrine mechanisms responsible for pulsatile LH and GH secretion in sexually active rams.  相似文献   

8.
Pituitary secretion of LH and testicular secretion of testosterone were investigated during the transitional period from the non-breeding to breeding season of mature male fallow deer exhibiting either normal transitional patterns or shortened transitional patterns in response to summer melatonin treatment. Melatonin implants were administered to 4 bucks for a 150-day period starting 130 days after the winter solstice. Four contemporary bucks served as controls. Melatonin treatment advanced rutting activity, testis development and neck muscle hypertrophy by 6-8 weeks. Profiles of plasma LH and testosterone, based on a 30-min sampling frequency over 24 h, were obtained from 3 treated and 3 control bucks on 4 occasions over the period spanning the transition into the breeding season. In control bucks, LH and testosterone pulse frequency were low (0-2 pulses/24 h) in January and increased (5-7 pulses/24 h) in February. By March and April (pre-rut and rut periods respectively) there was a two-fold increase in basal plasma LH concentrations, a decline in LH pulse frequency (0-1 pulse/24 h) and episodic surges in plasma testosterone concentrations. Melatonin treatment resulted in a shift in hormone profiles, with highly pulsatile patterns of LH and testosterone secretion (7 pulses/24 h) occurring earlier in January. The subsequent post-rut profiles of treated bucks were characterized by lower basal plasma LH concentrations, and reduced frequency and amplitude of plasma testosterone surges.  相似文献   

9.
The response of sexually experienced Ile-de-France rams to the presentation of oestrous females in October at sunrise (Subgroup S) or at 11:00 h (Subgroup N) was studied and compared with unstimulated controls (Subgroup C). Animals (12 per group) were bled for 7 h at 20-min intervals, starting 3 h before stimulation by oestrous females (3 per group). Eight rams from Subgroup S showed an increase of LH pulse frequency and only 3 in Subgroup N (P less than 0.03). In Subgroup S the introduction of females led to 2- and 3-fold increases in LH pulse frequency during the stimulation period compared with values in Subgroup C or before the stimulation period (3, 1.6 and 1 peaks/rams/6 h respectively; P less than 0.05). The presence of females also led to an increase in mean testosterone concentrations, and small increases in basal and mean LH values. No differences were found in LH peak amplitudes. In Subgroup N only inconsistent evidence of increases in mean LH and testosterone values was found. No differences between Subgroups S and N in behavioural patterns during stimulation were detected. We conclude that the presence of females affects LH pulse frequency at sunrise but not at noon during the breeding season and this effect is at least partly independent of sexual behaviour. These results suggest a possible circadian variation in CNS sensitivity involving the hypothalamic regulation of LH secretion in response to the presence of oestrous females.  相似文献   

10.
At monthly intervals during the year blood samples were collected every 20 min for 12 h from 4 entire and 2 prepubertally castrated adult fallow deer bucks. In the entire bucks there were seasonal changes in mean concentrations and pulse frequencies of plasma LH. Mean concentrations in late summer and autumn were 3-6 times higher than during other seasons. LH pulse frequency was low (0-1 pulses/12 h) during most of the year and increased only during the 2-month period (January and February) that marked the transition from the non-breeding season to the autumn rut. During this period there was a close temporal relationship between pulses of LH and testosterone. However, during the rutting period (March and April) episodic secretion of testosterone, manifest as surges in plasma concentrations of 4-6 h duration, was not associated with any detectable pulses in LH although mean plasma concentrations of LH remained elevated. During the rut, the surges of plasma testosterone occurred at similar times of the day. Plasma profiles in May indicated very low concentrations of LH and testosterone secretion in the immediate post-rut period. Castrated bucks exhibited highly seasonal patterns of LH secretion, with mean plasma LH concentrations and LH pulse frequency being lowest in November (early summer) and highest in February and March (late summer-early autumn). Mean concentrations and pulse frequency of LH in castrated bucks were higher than for entire bucks at all times of the year.  相似文献   

11.
Sexually mature rams were left intact, castrated (wethers), castrated and implanted with testosterone, or castrated, implanted with testosterone and pulse-infused every hour with LHRH. Serum concentrations of LH increased rapidly during the first week after castration and at 14 days had reached values of 13.1 +/- 2.2 ng/ml (mean +/- s.e.m.) and were characterized by a rhythmic, pulsatile pattern of secretion (1.6 +/- 0.1 pulses/h). Testosterone prevented the post-castration rise in serum LH in wethers (1.0 +/- 0.5 ng/ml; 0 pulses/h), but a castrate-type secretory pattern of LH was obtained when LHRH and testosterone were administered concurrently (10.7 +/- 0.8 ng/ml; 1.0 pulse/h). We conclude that the hypothalamus (rather than the pituitary) is a principal site for the negative feedback of androgen in rams and that an increased frequency of LHRH discharge into the hypothalamo-hypophysial portal system contributes significantly to the post-castration rise in serum LH.  相似文献   

12.
Blood samples were taken once an hour from 17 ewes starting on Day 15 of a natural oestrous cycle and continuing for 4 days or until 36 h after the onset of oestrus. On Days 12, 16, 17 and 18 of the cycle, blood samples were also taken every 5 min for 6 h, between 09:00 and 15:00 h. LH pulse frequency rose and amplitude fell between the luteal and follicular phase of the oestrous cycle ( ). In the period from 48 h before to 40 h past the peak of the preovulatory LH surge, LH pulse frequency did not change. LH pulse amplitude was similar prior to and following the LH surge. During the preovulatory LH surge, LH pulse amplitude rose markedly ( ), with the visible, discrete components of pulses ranging from twice to 20 times those seen prior to or following the surge. The amplitude of LH pulses on the downslope of the LH surge was greater than that on the upslope of the surge (P < 0.05). We conclude that the preovulatory LH surge may consist of an amalgamation of high frequency, high amplitude pulses of LH secretion.  相似文献   

13.
Sexually-experienced Ile-de-France rams were tested for their behavioural and hormonal responses to oestrous females late in the breeding season (December) and again during the anoestrous/non-breeding season (February). Contact with oestrous ewes produced positive behavioural responses in most rams, including ano-genital sniffing, nudging, mounting and mating (ejaculation). Associated with this heterosexual contact was a rapid and significant increase in mean plasma testosterone levels. During the February test, fourfold-increased testosterone levels accompanied sixfold-increased LH pulse frequencies and threefold-increased mean plasma LH levels. In December, however, the spontaneous high frequency of LH pulses did not permit a significant female-induced change in LH secretion. Exposure of rams to the empty test-pen environment (i.e., females absent) failed to produce a change in plasma LH or testosterone. We conclude that the conditions necessary for demonstrating an “ewe effect” on LH-testosterone release in the ram are most favorable during the anoestrous/non-breeding season.  相似文献   

14.
Two experiments were conducted to examine the effects of mouse epidermal growth factor (EGF) on the concentrations of testosterone, LH and FSH in jugular blood plasma and on the pituitary responsiveness to LHRH. In 20 rams treated with subcutaneous doses of EGF at rates of 85, 98 or 113 micrograms/kg fleece-free body weight, mean plasma LH and testosterone concentrations were significantly reduced (P less than 0.05) at 6 h after treatment but not at 24 h. EGF treatment at 130 micrograms/kg fleece-free body weight suppressed the plasma content of these hormones for up to 48 h. Mean plasma FSH concentrations decreased significantly (P less than 0.05) for up to 48 h after EGF treatment, the effect being most pronounced in rams with mean pretreatment FSH values greater than or equal to 0.5 ng/ml. Intravenous injections of 1.0 micrograms LHRH given to each of 5 rams before and at 6 h, 24 h and 72 h after EGF treatment produced LH and testosterone release patterns which paralleled those obtained in 5 control rams similarly treated with LHRH. These results suggest that, in rams, depilatory doses of mouse EGF temporarily impair gonadotrophin and androgen secretion by inhibiting LHRH release from the hypothalamus. Such treatment appears to have no effect on the responsiveness of the pituitary to LHRH.  相似文献   

15.
In castrated rams (Romney and Poll Dorset, n = 8 for each breed), inhibition by testosterone treatment (administered via Silastic capsules) of luteinizing hormone (LH) pulse frequency, basal and mean LH concentrations, mean follicle-stimulating hormone (FSH) concentration, and the peak and total LH responses to exogenous gonadotrophin-releasing hormone (GnRH) were significantly (P less than 0.01) greater during the nonbreeding than during the breeding season. Poll Dorset rams were less sensitive to testosterone treatment than Romney rams. In rams not receiving testosterone treatment, LH pulse frequency was significantly (P less than 0.05) lower during the nonbreeding season than during the breeding season in the Romneys (15.8 +/- 0.9 versus 12.0 +/- 0.4 pulses in 8 h), but not in the Poll Dorsets (13.6 +/- 1.2 versus 12.8 +/- 0.8 pulses in 8 h). It is concluded that, in rams, season influences gonadotrophin secretion through a steroid-independent effect (directly on hypothalamic GnRH secretion) and a steroid-dependent effect (indirectly on the sensitivity of the hypothalamo-pituitary axis to the negative feedback of testosterone). The magnitude of these effects appears to be related to the seasonality of the breed.  相似文献   

16.
Six Booroola and six Merino rams were fed either a diet which maintained constant live weight or the same diet plus a supplement of high protein lupin grain for 15 weeks, and changes in live weight and testicular volume were measured. Serial blood samples taken for 24 h before the start and 9 weeks after the treatment began were assayed for plasma LH and testosterone and the resulting profiles were analysed for pulses of both hormones. Five weeks later, the animals were given two intravenous injections of 1 μg gonadotrophin-releasing hormone (GnRH) 1 h apart in order to measure pituitary gland responsiveness. A further week later the animals were injected intravenously with 500 μg human chorionic gonadotrophin (hCG) and the levels of testosterone were measured in samples taken after 1.5 h to estimate the testicular responsiveness.The nutritional supplement stimulated testicular growth in both genotypes, so that at the end of the treatment period the testes had increased significantly (P<0.01) in volume by 66% in the Merinos and by 63% in the Booroolas. The live weights also increased, but by relatively less (34% and 43% for supplemented Merinos and Booroolas). The rates of increase in both testicular size and live weight were similar for the two breeds. There were no significant effects of diet on the tonic secretion of LH or testosterone, or on responsiveness to GnRH or hCG.The intervals between LH pulses were significantly shorter (P<0.05) in Booroola rams than in Merino rams both before and after treatment (5.8 h vs. 11.6 h before treatment). The breed differences in LH secretion were mimicked by the testosterone profiles. In the Booroolas, five of the twelve LH profiles contained groups consisting of two to four individually identifiable pulses, each of which elicited a separate pulse of testosterone. A pulse group was observed in only one profile from the Merinos (P=0.06). There were no significant differences between the genotypes in any other parameter of LH or testosterone secretion, or in their responsiveness to GnRH or hCG.It was concluded that (i) nutritional supplements will stimulate testicular growth in both Merino rams and Booroola rams; (ii) the increase in testicular size does not appear to involve an increase in the responsiveness of the testis to LH; and (iii) there are both qualitative and quantitative differences between the genotypes in the patterns of secretion of LH and testosterone which may be associated with the differences in their fecundity.  相似文献   

17.
No gene-specific differences were found with respect to LH or testosterone pulsatile secretion (over 12 h), or in 12 hourly mean FSH concentrations in adult Booroola FF and ++ rams. Also, no differences between genotypes in the LH response to an injection of testosterone propionate, the FSH response to an infusion of bovine follicular fluid, or the testosterone response to injections of PMSG were noted. However, during the phase of seasonal testicular development, mean testosterone pulse amplitude (over 12 h) and the FSH response to 25 micrograms GnRH were higher in FF than in ++ rams (P less than 0.05); there were also significant effects of sire (P less than 0.05 in FF genotype only) and litter size (P less than 0.05) on testosterone pulse amplitude and GnRH-stimulated FSH release, respectively. During the breeding season, mean LH, but not FSH, concentrations were higher in FF than in ++ rams, after an injection of 0.5 micrograms GnRH; LH release was not affected by sire or litter size (P greater than 0.05). Long-term studies revealed that the FF rams were born in significantly larger litters, they weighed significantly less than ++ rams (P less than 0.05), and that bodyweight was significantly correlated (P less than 0.05) with litter size. There were no differences in testis size, and testis size was not significantly correlated with bodyweight. There was a strong tendency (P = 0.056) for overall mean FSH concentrations, measured weekly for 9 months, to be highest more often in FF than in ++ rams.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Forty entire ewes of mixed breeds were kept in environmentally-controlled rooms with a 6-monthly light cycle. Six mature spayed Border Leicester × Merino ewes and four mature intact Poll Dorset rams were kept under the same conditions.Over a period of 2 years (four light cycles) estimates were made of ovarian, testicular and pituitary activity in response to the artificial light regime. Non-pregnant ewes were bled twice weekly: peripheral plasma progesterone levels > 1 ng/ml were taken as indicative of ovarian activity. Testicular activity was estimated by weekly tests for peripheral plasma testosterone and scrotal sac volume. Pituitary activity was estimated monthly by the response to the injection (i.v.) of 75 μg gonadotrophin releasing hormone (GnRH) to rams and of 18.75, 37.5 or 75 μg to ewes, using peripheral plasma luteinising hormone (LH) estimations from the time of GnRH injection.Data for ovarian and testicular measurements were classed into categories according to week and for pituitary response to month of the light cycle.Cubic regression analyses were conducted on the percentage of ewes with progesterone levels > 1 ng/ml and on ram testosterone and scrotal measurements.Despite the irregularity of the curve for the light cycle, the ovarian and testicular responses of rams and ewes followed an alternating curve with peaks and troughs of activity separated by approximately 13 weeks in the 26-week cycle. The peak of ovarian activity occurred during the long daylength period which followed a 22-week period of decreasing daylength and was preceded by 1 month by peak ram testosterone and scrotal sac volume.The pattern of pituitary response was related to that of the actual light cycle and the data were subjected to time-lag regression. This econometrical technique revealed that there was a delay in pituitary response to daylength changes of 2 months for rams, and between 2 and 3 months for the spayed ewes. The peak pituitary response to the GnRH test occurred one month earlier for rams than for the spayed ewes, and coincided with the corresponding troughs of gonadal activity of each sex.The results showed that the breeding season of sheep can be compressed into 6 months and that the pattern of pituitary response follows the daylength pattern more closely than do measurements of gonadal activity. Peak reproductive activity in rams, as measured by pituitary and gonadal activity, precedes that of ewes by approximately 1 month.  相似文献   

19.
Under moderate latitudes all breeds of rams undergo seasonal variations in testicular weight with a maximum during summer under decreasing daylength ([1]-[4]). Similarly, in rams submitted to a 6-month artificial light regime [5] or to an alternation of long (16L:8D) and short (8L:16D) days [6] an increase in testicular weight occurred following a decrease in daylength and vice versa. However this effect is transitory, a phenomenon which can be referred as photorefractoriness. In the present study the influence of the period of the light cycle on variation in testicular weight in the ram was investigated. 4 groups of 6 adults Ile-de-France rams were submitted to artificial light cycles where the daylength varied between 8-16 hrs. and the period (T) was 6, 4, 3, or 2 months respectively (Groups T6, T4, T3, and T2). Testicular volume was measured fortnightly using an orchidometer, Variations in testicular volume were submitted to harmonic regression analysis following the model y(t)=mu + a sin(2(pi t/tau) + phi). Cyclic changes in testicular volume were seen with each light cycle, at least in groups T6, T4, and T3 (Fig.). Analysis (Table) showed that: (1) the coefficient of determination R2 was high in the groups (2) mean testicular volume has increased from 258 to 294 cm3 when the period of the light cycle decreased from 6 to 2 months; (3) conversely, the amplitude decreased from 66.5 to 26.5 cm3 as the period decreased; (4) maximal testicular volumes (mean plus amplitude) were similar in all groups (range: T4, 312,5-T6,324 cm3) while minima (mean less amplitude) differed significantly (P<0.000,1) between groups (range: T6 and T4 about 190, T2 267.5 cm3) and (50 th computed periods of testicular volumes cycles were almost identical to the imposed light cycles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Juvenile rat ovaries were placed in perifusion culture and exposed to (1) tonic FSH (200 ng PR-1 equiv./ml), (2) LH pulses (2/h, amplitude = 80 ng RP-1 equiv./ml), (3) tonic FSH and LH pulses, (4) tonic FSH with LH mini-surges, or (5) tonic FSH with LH and prolactin mini-surges. The LH mini-surge consisted of a series of 80 ng/ml pulses (2/h) with LH increasing to 180 ng/ml for 2 h then returning to the 80 ng/ml pulses. The prolactin mini-surge consisted of a series of 15 ng/ml pulses (2/h) with prolactin increasing to 40 ng/ml for 2 h before returning to the 15 ng/ml pulses. The LH mini-surge occurred at 14:00 h daily while a prolactin mini-surge occurred at 14:00 h and 06:00 h daily. Ovaries were perifused for 0 (in-vivo control), 24 or 48 h, incubated for 1 h in hormone-free medium to assess steroid secretion and subsequently prepared for histological analysis. After a 24 h exposure to FSH, oestradiol secretion was increased, while exposure to LH pulses enhanced progesterone secretion. Treatment with FSH, LH pulses or FSH plus LH pulses decreased the number of small antral follicles by 24 h of perifusion compared to control (P less than 0.05). The LH mini-surge maintained the small and medium-sized antral follicles after 24 h and increased the number of preovulatory-sized follicles over controls by 48 h (P less than 0.05). Prolactin/LH mini-surges increased the number of preovulatory-sized follicles within 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号