首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yonezawa H  Osaki T  Woo T  Kurata S  Zaman C  Hojo F  Hanawa T  Kato S  Kamiya S 《Anaerobe》2011,17(6):388-390
Helicobacter pylori is one of the most common causes of bacterial infection in humans. Infection with H. pylori is closely associated with gastritis and peptic ulcers and is a risk factor for gastric cancer and mucosa-associated lymphoid tissue lymphoma. H. pylori forms biofilms on glass surfaces at the air–liquid interface in in-vitro batch cultures. We previously reported that strain TK1402 showed a strong biofilm-forming ability in vitro. We also suggested the outer membrane vesicles (OMV) produced by strain TK1402 might be related to its biofilm forming ability. In the present study, we analyzed the protein profile of the OMV produced by strain TK1402 and found a unique 22-kDa protein in TK1402 OMV cultured for 2–3 days. In addition, this protein could not be detected in the OMVs produced by other H. pylori strains. These results suggest that the 22-kDa protein is involved in effective biofilm formation by strain TK1402.  相似文献   

2.
Helicobacter pylori evade immune responses and achieve persistent colonization in the stomach. However, the mechanism by which H. pylori infections persist is not clear. In this study, we showed that MIR30B is upregulated during H. pylori infection of an AGS cell line and human gastric tissues. Upregulation of MIR30B benefited bacterial replication by compromising the process of autophagy during the H. pylori infection. As a potential mechanistic explanation for this observation, we demonstrate that MIR30B directly targets ATG12 and BECN1, which are important proteins involved in autophagy. These results suggest that compromise of autophagy by MIR30B allows intracellular H. pylori to evade autophagic clearance, thereby contributing to the persistence of H. pylori infections.  相似文献   

3.
Previous reports have indicated that Helicobacter pylori (H. pylori) causes epigenetic changes of certain genes such as cancer suppression genes, which may be associated with carcinogenesis. However, the mechanism by which it causes epigenetic changes in certain genes and not in others is unclear. Presently, we focused on a cancer suppression gene, runx3, and demonstrated the following: (1) H. pylori induces nitric oxide (NO) production in macrophages. (2) NO causes methylation of runx3 in epithelial cells. (3) H. pylori induces the methylation of epithelial cells in the presence of macrophages, which is reversed by an NO-specific inhibitor. These results indicate that H. pylori-induced methylation is mediated by NO, and suggest that NO may be a key to the mechanism of how H. pylori causes epigenetic changes in certain genes. Additionally, we demonstrated that lipopolysaccharide, as well as H. pylori, induces NO-mediated methylation, indicating that other inflammation inducers beside H. pylori might induce aberrant methylation of runx3.  相似文献   

4.
Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulcer and gastric cancer. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Here we show that human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death receptor signaling. Human gastric epithelial cells are intrinsically resistant to TRAIL-mediated apoptosis. The induction of TRAIL sensitivity by H. pylori is dependent on the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex (DISC) through downregulation of cellular FLICE-inhibitory protein (FLIP). Overexpression of FLIP abolished the H. pylori-induced TRAIL sensitivity in human gastric epithelial cells. Our study thus demonstrates that H. pylori induces sensitivity to TRAIL apoptosis by regulation of FLIP and assembly of DISC, which initiates caspase activation, resulting in the breakdown of resistance to apoptosis, and provides insight into the pathogenesis of gastric damage in Helicobacter infection. Modulation of host apoptosis signaling by bacterial interaction adds a new dimension to the pathogenesis of Helicobacter.  相似文献   

5.
The discovery that Helicobacter pylori is associated with gastric cancer has led to numerous studies that investigate the mechanisms by which H. pylori induces carcinogenesis. Gastric cancer shows genetic instability both in nuclear and mitochondrial DNA, besides impairment of important DNA repair pathways. As such, this review highlights the consequences of H. pylori infection on the integrity of DNA in the host cells. By down-regulating major DNA repair pathways, H. pylori infection has the potential to generate mutations. In addition, H. pylori infection can induce direct changes on the DNA of the host, such as oxidative damage, methylation, chromosomal instability, microsatellite instability, and mutations. Interestingly, H. pylori infection generates genetic instability in nuclear and mitochondrial DNA.  相似文献   

6.
Numerous diagnostic assays for Helicobacter pylori detection are available. However, these techniques have their own advantages as well as limitations. Here we tried to develop a real-time quantitative (Q) PCR assay to measure ureC copy number to detect H. pylori, based on the fact that there is only one copy of the ureC gene per bacterium. We enrolled 120 adult patients [non-ulcer dyspepsia (NUD) 60, peptic ulcer disease (PUD) 20, gastric cancer (GC) 40] undergoing upper gastrointestinal endoscopies. During each endoscopic examination, antral biopsies from normal region of the antrum were obtained and subjected to the following tests: RUT, culture, histopathology, H. pylori-specific ureC PCR and ureC Q-PCR. Calculation of H. pylori copy number was based on the standard curve generated using 10-fold dilutions of DNA extracted from the H. pylori control strain varying from 105 to 101 copies. The prevalence of H. pylori infection in our study population was 54% with no significant difference among disease and control population. The sensitivity of Q-PCR was found to be 100% which was highest among all diagnostic tests. The established Q-PCR is around 10 times more sensitive than the conventional PCR method. The copy number of H. pylori DNA was significantly increased when overall gastritis, H. pylori density, chronic inflammation and intestinal metaplasia were present. In summary, we developed a rapid and sensitive Q-PCR method for detecting H. pylori. This technique offers a significant improvement over other available methods for detecting H. pylori in clinical and research samples.  相似文献   

7.
CagA protein is the most assessed effecter molecule of Helicobacter pylori. In this report, we demonstrate how CagA protein regulates the functions of dendritic cells (DC) against H. pylori infection. In addition, we found that CagA protein was tyrosine-phosphorylated in DC. The responses to cagA-positive H. pylori in DC were reduced in comparison to those induced by cagA-negative H. pylori. CagA-overexpressing DC also exhibited a decline in the responses against LPS stimulation and the differentiation of CD4+ T cells toward Th1 type cells compared to wild type DC. In addition, the level of phosphorylated IRF3 decreased in CagA-overexpressing DC stimulated with LPS, indicating that activated SHP-2 suppressed the enzymatic activity of TBK1 and consequently IRF3 phosphorylation. These data suggest that CagA protein negatively regulates the functions of DC via CagA phosphorylation and that cagA-positive H. pylori strains suppress host immune responses resulting in their chronic colonization of the stomach.  相似文献   

8.
Helicobacter pylori is a human specific gastric pathogen. H. pylori pathogenesis process involves a number of well-studied virulence factors that include the ‘vacuolating cytotoxin’ and the ‘cytotoxin associated gene A’. Analysis of the H. pylori genome, however, indicates presence of additional virulence factors that are yet to be characterized in molecular detail. For example, H. pylori genome harbors a gene that has potential to encode a protein with sequence similarity to those of the TlyA-like proteins of several pathogenic bacteria. Earlier studies have indicated potential association of this H. pylori tlyA gene in the virulence mechanism of the organism. Despite such notions, however, the TlyA-like protein of H. pylori has not been studied previously in molecular detail. In particular, purified form of H. pylori TlyA has never been studied before toward exploring its functional properties. Here, we report characterization of the H. pylori TlyA protein purified from the recombinant over-expression system in Escherichia coli. Purified form of the recombinant TlyA exhibits prominent hemolytic activity against human erythrocytes, presumably via formation of pores of specific diameter in the cell membrane. Purified TlyA also triggers prominent cytotoxic responses in human gastric adenocarcinoma cells. Altogether, our study establishes H. pylori TlyA as a potential virulence factor of the organism.  相似文献   

9.
A method denominated rapid paper disk test (RPDT) was developed to identify H. pylori colonies in complex cultures obtained from gerbil gastric homogenates. Identification is based on a characteristic reaction pattern (RP) for H. pylori colonies given by the combination of the urease-oxidase activities on a paper disk. Compared to the RPs obtained from gerbil's intestinal tract isolated bacteria, H. pylori RP is completely distinguishable, even from those of bacteria that share one or both activities as are Aerococcus urinae, Bacillus sphaericus, Bacillus brevis, Corynebacterium pseudogenitalium, and Staphylococcus simulans, as well as from those produced by collection strains Proteus vulgaris and Pseudomonas aeruginosa. This method allows the practical quantification of H. pylori colonies in highly contaminated plates. RPDT has the following advantages over other methodologies that use indicators in the medium: it employs two of the three routinely used H. pylori biochemical identification tests, the reagents do not interfere with bacterial viability, there are no restrictions in relation to the medium used, and it is a simple, fast, and low-cost method.  相似文献   

10.
Helicobacter pylori (H. pylori) is the causative pathogen underlying gastric diseases such as chronic gastritis and gastric cancer. Previously, the authors revealed that α1,4-linked N-acetylglucosamine-capped O-glycan (αGlcNAc) found in gland mucin suppresses H. pylori growth and motility by inhibiting catalytic activity of cholesterol α-glucosyltransferase (CHLαGcT), the enzyme responsible for biosynthesis of the major cell wall component cholesteryl-α-d-glucopyranoside (CGL). Here, the authors developed a polyclonal antibody specific for CHLαGcT and then undertook quantitative ultrastructural analysis of the enzyme’s localization in H. pylori. They show that 66.3% of CHLαGcT is detected in the cytoplasm beneath the H. pylori inner membrane, whereas 24.7% is present on the inner membrane. In addition, 2.6%, 5.0%, and 1.4% of the protein were detected in the periplasm, on the outer membrane, and outside microbes, respectively. By using an in vitro CHLαGcT assay with fractionated H. pylori proteins, which were used as an enzyme source for CHLαGcT, the authors demonstrated that the membrane fraction formed CGL, whereas other fractions did not. These data combined together indicate that CHLαGcT is originally synthesized in the cytoplasm of H. pylori as an inactive form and then activated when it is associated with the cell membrane. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.  相似文献   

11.
Helicobacter pylori mediated gastric ulcer and cancers are common global problems since it was found to colonize in ∼50% of gastric ulcer/cancer patients. Decalepis hamiltonii, (Asclepiadaceae family) extracts have been depicted with medicinal properties supporting the traditional knowledge of health beneficial attributes of D. hamiltonii. Previously we have shown that both aqueous as well as methanol extracts of D. hamiltonii containing abundant phenolics with predominant levels (20-40% of total phenolics) of 2-hydroxy-4-methoxy benzaldehyde (HMBA). Despite higher levels, HMBA contributed very little to the antioxidant activity (<10%) when compared to other phenolic compounds in the extract. In the current study we attempted to explore antimicrobial property, particularly anti-H. pylori activity, since traditional users document D. hamiltonii as a fighter of microbial infections. HMBA was isolated from the roots of D. hamiltonii by hydrodistillation and cold crystallization method; identified by HPLC and characterized using ESI-MS and confirmed by NMR studies as a compound of molecular mass 152 Da. Isolated HMBA was found to inhibit the growth of H. pylori, a potential ulcerogen in a dose dependent manner with MIC of ∼39 μg/mL as apposed to that of amoxicillin (MIC - 26 μg/mL) for which H. pylori is susceptible. Results were further substantiated by the lysis of H. pylori by electron microscopy and electrophoretic studies. Studies on the mechanism of action indicated the counteracting effect of vacuolating toxin (VacA) of H. pylori which otherwise would lead to host cell cytotoxicity. Further the increased binding ability of HMBA to DNA and protein offered an impact on DNA protectivity and bioavailability. Results for the first time provide a direct evidence for anti-microbial attribute of HMBA. Insignificant antioxidant attribute of HMBA also reveals the anti-H. pylori activity via mechanisms other than antioxidative routes.  相似文献   

12.
The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.  相似文献   

13.
Huang CH  Chuang MH  Lo WL  Wu MS  Wu YH  Wu DC  Chiou SH 《Biochimie》2011,93(7):1115-1123
The development of various gastrointestinal diseases was suggested to be associated with chronic inflammation as a consequence of Helicobacter pylori (H. pylori) infection. Our previous studies showed that an antioxidant protein alkylhydroperoxide reductase (AhpC) is an abundant and important antioxidant protein present in H. pylori. In this study we have explored the potential of utilizing antibodies to AhpC for detection of patients who are at high risks of evolving into severe outcomes of gastric malignancies after H. pylori infection. The correlation between AhpC and extents of inflammatory damage in tissues was demonstrated by immunoblotting assays and endoscopic examinations. Oxidative stress-induced high-molecular-weight (HMW) AhpC with chaperone activity in vivo was further investigated by co-immunoprecipitation, 2-dimensional gel electrophoresis (2-DE) followed by nano-liquid chromatography coupled tandem mass spectrometry (nanoLC-MS/MS). We found AhpC was consistently expressed in higher amounts in H. pylori strains isolated from patients with gastric cancer (GC) than gastritis (GA). Immunological analysis of seropositivity for AhpC indicated that positive diagnostic rates for H. pylori-infected patients with GA, gastric ulcer (GU) and GC were 68% (15/22), 100% (50/50) and 100% (50/50), respectively. In great contrast to low-molecular-weight (LMW) AhpC, HMW AhpC with chaperone function was found to distribute inside of H. pylori cells. We also found that LMW forms of AhpC were recognized by serum antibodies from GA patients whereas HMW forms of AhpC reacted mainly with those from GU and GC patients. Based on the significant difference between AhpC isolated from strains of GC and GA, it is conceivable that AhpC of H. pylori may prove to be useful as a prognostic or diagnostic protein marker to monitor varied clinical manifestations of gastrointestinal patients infected with H. pylori.  相似文献   

14.
Francisella spp. are highly infectious and virulent bacteria that cause the zoonotic disease tularemia. Knowledge is lacking for the virulence factors expressed by Francisella and how these factors are secreted and delivered to host cells. Gram-negative bacteria constitutively release outer membrane vesicles (OMV), which may function in the delivery of virulence factors to host cells. We identified growth conditions under which Francisella novicida produces abundant OMV. Purification of the vesicles revealed the presence of tube-shaped vesicles in addition to typical spherical OMV, and examination of whole bacteria revealed the presence of tubes extending out from the bacterial surface. Recently, both prokaryotic and eukaryotic cells have been shown to produce membrane-enclosed projections, termed nanotubes, which appear to function in cell-cell communication and the exchange of molecules. In contrast to these previously characterized structures, the F. novicida tubes are produced in liquid as well as on solid medium and are derived from the OM rather than the cytoplasmic membrane. The production of the OMV and tubes (OMV/T) by F. novicida was coordinately regulated and responsive to both growth medium and growth phase. Proteomic analysis of purified OMV/T identified known Francisella virulence factors among the constituent proteins, suggesting roles for the vesicles in pathogenesis. In support of this, production of OM tubes by F. novicida was stimulated during infection of macrophages and addition of purified OMV/T to macrophages elicited increased release of proinflammatory cytokines. Finally, vaccination with purified OMV/T protected mice from subsequent challenge with highly lethal doses of F. novicida.  相似文献   

15.
Secretion of outer membrane vesicles (OMV) is an intriguing phenomenon of Gram-negative bacteria and has been suggested to play a role as virulence factors. The respiratory pathogens Moraxella catarrhalis reside in tonsils adjacent to B cells, and we have previously shown that M. catarrhalis induce a T cell independent B cell response by the immunoglobulin (Ig) D-binding superantigen MID. Here we demonstrate that Moraxella are endocytosed and killed by human tonsillar B cells, whereas OMV have the potential to interact and activate B cells leading to bacterial rescue. The B cell response induced by OMV begins with IgD B cell receptor (BCR) clustering and Ca2+ mobilization followed by BCR internalization. In addition to IgD BCR, TLR9 and TLR2 were found to colocalize in lipid raft motifs after exposure to OMV. Two components of the OMV, i.e., MID and unmethylated CpG-DNA motifs, were found to be critical for B cell activation. OMV containing MID bound to and activated tonsillar CD19+ IgD+ lymphocytes resulting in IL-6 and IgM production in addition to increased surface marker density (HLA-DR, CD45, CD64, and CD86), whereas MID-deficient OMV failed to induce B cell activation. DNA associated with OMV induced full B cell activation by signaling through TLR9. Importantly, this concept was verified in vivo, as OMV equipped with MID and DNA were found in a 9-year old patient suffering from Moraxella sinusitis. In conclusion, Moraxella avoid direct interaction with host B cells by redirecting the adaptive humoral immune response using its superantigen-bearing OMV as decoys.  相似文献   

16.
The Helicobacter pylori outer membrane proteins play an important role in pathogenesis; the outer inflammatory protein A (OipA) is one of these proteins which play the main role in the development of inflammation. In this study, purification of recombinant H. pylori OipA was performed by Ni–NTA affinity chromatography. Gastric carcinoma epithelial cells (AGS cell) were treated by different concentrations of recombinant OipA for various lengths of time and cell viability was evaluated by the viability assay. Statistical analysis showed that OipA had toxic effects on AGS cells in a concentration of 500 ng/ml after 24 and 48 h, and this toxic dose was 256 ng/ml after 72 h. OipA had direct toxic effects on gastric epithelial cells and the toxicity was observed to depend on time and dose of H. pylori exposure. Attachment of H. pylori to gastric epithelial cells is a key part in the pathogenesis and enables H. pylori to damage the epithelial cells with OipA.  相似文献   

17.
It is generally accepted that most gastrointestinal diseases are probably caused by the bacterial pathogen Helicobacter pylori (H. pylori). In this study we have focused on the comparison of protein expression profiles of H. pylori grown under normal and high-salt conditions by a proteomics approach. We have identified about 190 proteins whose expression levels changed after growth at high salt concentration. Among these proteins, neutrophil-activating protein (NapA) was found to be consistently up-regulated under osmotic stress brought by high salts. We have investigated the effect of high salt on secondary and tertiary structures of NapA by circular dichroism spectroscopy followed by analytical ultracentrifugation to monitor the change of quaternary structure of recombinant NapA with increasing salt concentration. The loss of iron-binding activity of NapA coupled with noticeable energetic variation in protein association of NapA as revealed by isothermal titration calorimetry was found under high salt condition. The phylogenetic tree analysis based on sequence comparison of 16 protein sequences encompassing NapA proteins and ferritin of H. pylori and other prokaryotic organisms pointed to the fact that all H. pylori NapA proteins of human origin are more homologous to NapA of Helicobacter genus than to other bacterial NapA. Based on computer modeling, NapA proteins from H. pylori of human isolates are found more similar to ferritin from H. pylori than to NapA from other species of bacteria. Taken together, these results suggested that divergent evolution of NapA and ferritin possessing dissimilar and diverse sequences follows a path distinct from that of convergent evolution of NapA and ferritin with similar dual functionality of iron-binding and ferroxidase activities.  相似文献   

18.

Background

Hyperglycemia increases the risk of gastric cancer in H. pylori-infected patients. High glucose could increase endothelial permeability and cancer-associated signaling. These suggest high glucose may affect H. pylori or its infected status.We used two strains to investigate whether H. pylori growth, viability, adhesion and CagA-phosphorylation level in the infected-AGS cells were influenced by glucose concentration (100, 150, and 200 mg/dL).

Results

The growth curves of both strains in 200 mg/dL of glucose were maintained at the highest optimal density after 48 h and the best viability of both strains were retained in the same glucose condition at 72 h. Furthermore, adhesion enhancement of H. pylori was significantly higher in 200 mg/dL of glucose as compared to that in 100 and 150 mg/dL (p < 0.05). CagA protein also increased in higher glucose condition. The cell-associated CagA and phosphorylated-CagA was significantly increased in 150 and 200 mg/dL of glucose concentrations as compared to that of 100 mg/dL (p < 0.05), which were found to be dose-dependent.

Conclusion

Higher glucose could maintain H. pylori growth and viability after 48 h. H. pylori adhesion and CagA increased to further facilitate the enhancement of cell-associated CagA and phosphorylated CagA in higher glucose conditions.  相似文献   

19.
As an opportunistic Gram-negative pathogen, Pseudomonas aeruginosa must be able to adapt and survive changes and stressors in its environment during the course of infection. To aid survival in the hostile host environment, P. aeruginosa has evolved defense mechanisms, including the production of an exopolysaccharide capsule and the secretion of a myriad of degradative proteases and lipases. The production of outer membrane-derived vesicles (OMVs) serves as a secretion mechanism for virulence factors as well as a general bacterial response to envelope-acting stressors. This study investigated the effect of sublethal physiological stressors on OMV production by P. aeruginosa and whether the Pseudomonas quinolone signal (PQS) and the MucD periplasmic protease are critical mechanistic factors in this response. Exposure to some environmental stressors was determined to increase the level of OMV production as well as the activity of AlgU, the sigma factor that controls MucD expression. Overexpression of AlgU was shown to be sufficient to induce OMV production; however, stress-induced OMV production was not dependent on activation of AlgU, since stress caused increased vesiculation in strains lacking algU. We further determined that MucD levels were not an indicator of OMV production under acute stress, and PQS was not required for OMV production under stress or unstressed conditions. Finally, an investigation of the response of P. aeruginosa to oxidative stress revealed that peroxide-induced OMV production requires the presence of B-band but not A-band lipopolysaccharide. Together, these results demonstrate that distinct mechanisms exist for stress-induced OMV production in P. aeruginosa.  相似文献   

20.
This review investigates ancient infectious diseases in the Americas dated to the pre-colonial period and considers what these findings can tell us about the history of the indigenous peoples of the Americas. It gives an overview, but focuses on four microbial pathogens from this period: Helicobacter pylori, Mycobacterium tuberculosis, Trypanosoma cruzi and Coccidioides immitis, which cause stomach ulceration and gastric cancer, tuberculosis, Chagas disease and valley fever, respectively. These pathogens were selected as H. pylori can give insight into ancient human migrations into the Americas, M. tuberculosis is associated with population density and urban development, T. cruzi can elucidate human living conditions and C. immitis can indicate agricultural development. A range of methods are used to diagnose infectious disease in ancient human remains, with DNA analysis by polymerase chain reaction one of the most reliable, provided strict precautions are taken against cross contamination. The review concludes with a brief summary of the changes that took place after European exploration and colonisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号