首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Arteriogenesis is a complicated process induced by increased local shear‐and radial wall‐stress, leading to an increase in arterial diameter. This process is enhanced by growth factors secreted by both inflammatory and endothelial cells in response to physical stress. Although therapeutic promotion of arteriogenesis is of great interest for ischaemic diseases, little is known about the modulation of the signalling cascades via microRNAs. We observed that miR‐132/212 expression was significantly upregulated after occlusion of the femoral artery. miR‐132/212 knockout (KO) mice display a slower perfusion recovery after hind‐limb ischaemia compared to wildtype (WT) mice. Immunohistochemical analysis demonstrates a clear trend towards smaller collateral arteries in KO mice. Although Ex vivo aortic ring assays score similar number of branches in miR‐132/212 KO mice compared to WT, it can be stimulated with exogenous miR‐132, a dominant member of the miR‐132/212 family. Moreover, in in vitro pericyte‐endothelial co‐culture cell assays, overexpression of miR‐132 and mir‐212 in endothelial cells results in enhanced vascularization, as shown by an increase in tubular structures and junctions. Our results suggested that miR‐132/212 may exert their effects by enhancing the Ras‐Mitogen‐activated protein kinases MAPK signalling pathway through direct inhibition of Rasa1, and Spred1. The miR‐132/212 cluster promotes arteriogenesis by modulating Ras‐MAPK signalling via direct targeting of its inhibitors Rasa1 and Spred1.  相似文献   

5.
6.
7.
8.
MicroRNAs (miRNAs) regulate various developmental programs of plants. This review focuses on miRNA involvement in early events of plant development, such as seed germination, seedling development and the juvenile to adult phase transition. miR159 and miR160 are involved in the regulation of seed germination through their effects on the sensitivity of seeds to ABA. miR156 and miR172 play critical roles in the emergence of vegetative leaves at post-germinative stages, which is important for the transition to autotrophic growth. The phase transition from the juvenile to adult stage in both monocots and dicots is also regulated by miR156 and miR172. In these early developmental processes, there are miRNA gene regulation cascades where the miR156 pathway acts upstream of the miR172 pathway. Moreover, targets of miR156 and miR172 exert positive feedback on the expression of MIR genes that suppress themselves. The early events of plant development appear to be controlled by complex mechanisms involving sequential expression of different miRNA pathways and feedback loops among miRNAs and their target genes.  相似文献   

9.
10.
11.
12.
13.
BackgroundMorphine is one of the first-line therapies for the treatment of pain despite its secondary effects. It modifies the expression of epigenetic factors like miRNAs. In the present study, we analyzed miR-212 and miR-132 and their implication in morphine effects in the zebrafish Central Nervous System (CNS) through the regulation of Bdnf expression.MethodsWe used control and knock-down zebrafish embryos to assess the effects of morphine in miRNAs 212/132 and mitotic or apoptotic cells by qPCR, immunohistochemistry and TUNEL assay, respectively. Bdnf and TrkB were studied by western blot and through a primary neuron culture. A luciferase assay was performed to confirm the binding of miRNAs 212/132 to mecp2.ResultsMorphine exposure decreases miR-212 but upregulates miR-132, as wells as Bdnf and TrkB, and changes the localization of proliferative cells. However, Bdnf expression was downregulated when miRNAs 212/132 and oprm1 were knocked-down. Furthermore, we proved that these miRNAs inhibit mecp2 expression by binding to its mRNA sequence. The described effects were corroborated in a primary neuron culture from zebrafish embryos.ConclusionsWe propose a mechanism in which morphine alters the levels of miRNAs 212/132 increasing Bdnf expression through mecp2 inhibition. oprm1 is also directly involved in this regulation. The present work confirms a relationship between the opioid system and neurotrophins and shows a key role of miR-212 and miR-132 on morphine effects through the regulation of Bdnf pathway.General significance.miRNAs 212/132 are novel regulators of morphine effects on CNS. Oprm1 controls the normal expression of Bdnf.  相似文献   

14.
MicroRNAs (miRNAs) are small, regulatory non‐coding RNAs that have potent effects on gene expression. Several miRNA are deregulated in cellular processes involved in human liver diseases and regulation of cellular processes. Recent studies have identified the involvement of miR‐29 in hepatic fibrosis and carcinogenesis. Although several targets of miR‐29 have been identified, there is limited information regarding the cell‐type specific roles of miR‐29 in the liver, and we sought to evaluate the role of this miRNA in hepatic pathobiology. We report the generation of a tissue–specific knockout mouse to evaluate the role of miR‐29 in hepatic fibrosis and carcinogenesis in response to injury. We hypothesized that miR‐29 contributes to the hepatocyte driven response to chronic cellular injury that results in fibrosis. In support of this hypothesis, fibrosis and mortality were enhanced in miR29 knockout mice in response to carbon tetrachloride. Genome‐wide gene expression analysis identified an over‐representation of genes associated with fibrosis. The oncofetal RNA H19 was modulated in a miR‐29 dependent manner following exposure to carbon tetrachloride in vivo. The impact of a hepatocyte specific miR‐29 knockout on survival following chronic hepatic injury in vivo implicates this miRNA as a potential target for intervention. These results provide evidence of the involvement of miR‐29 in chronic hepatic injury, and suggest a role for deregulated hepatocyte expression of miR‐29 in the response to hepatic injury, fibrosis and carcinogenesis.  相似文献   

15.
16.
17.
18.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

19.
20.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号