首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oligopeptide transporter (PepT1) is located on the brush-border membrane of the intestinal epithelium, and plays an important role in dipeptide and tripeptide absorptions from protein digestion. In this study, we cloned the PepT1 cDNA from grass carp and characterized its expression profile in response to dietary protein and feed additives (sodium butyrate) treatments. The PepT1 gene encodes a protein of 714 amino acids with high sequence similarity with other vertebrate homologues. Expression analysis revealed highest levels of PepT1 mRNA expression in the foregut of grass carp. In addition, PepT1 mRNA expression exhibited diurnal variation in all three bowel segments of intestine with lower levels of expression in daytime than nighttime. During embryonic development, PepT1 showed a dynamic pattern of expression reaching maximal levels of expression in the gastrula stage and minimal levels in the organ stage. The PepT1 expression showed constant levels from 14 to 34 day post-hatch. To determine whether fish diet of different protein contents may have any effect on PepT1 expression, we extended our research to dietary regulation of PepT1 expression. We found that dietary protein levels had a significant effect on PepT1 gene expression. In addition, PepT1 mRNA levels were higher after feeding with fish meal than with soybean meal. Moreover, in vitro and in vivo sodium butyrate treatments increased PepT1 expression in the intestine of grass carp. The results demonstrate for the first time that PepT1 mRNA expression is regulated in a temporal and spatial pattern during development, and dietary protein and feed additives had a significant effects on PepT1 gene expression in grass carp.  相似文献   

2.
Wang W  Shi C  Zhang J  Gu W  Li T  Gen M  Chu W  Huang R  Liu Y  Hou Y  Li P  Yin Y 《Amino acids》2009,37(4):593-601
The gene encoding the oligopeptide transporter PepT1 (HGMW-approved gene symbol SLC15A1) from Tibetan porcine intestine was cloned. The open reading frame of this cDNA encodes 708 deduced amino acid residues that show high sequence similarity with its ovine and bovine counterparts. The putative protein has 12 putative transmembrane domains, including many structural features that are highly conserved among the vertebrate orthologs. PepT1 mRNA expression can be detected in duodenum, jejunum and ileum from Tibetan pigs at 28 days by RT-PCR. Real-time PCR analysis indicated that the jejunum had the highest expression of PepT1 when compared with the duodenum and ileum. PepT1 mRNA expression in the duodenum and proximal jejunum increases continuously from day 1 to day 14: expression was highest at day14 (P < 0.01) and then decreased gradually from day 21 to day 35. Our findings show that PepT1 mRNA expression in the distal jejunum increased gradually with age in suckling Tibetan piglet, and this may have important implications for amino acid and protein nutrition in young animals.  相似文献   

3.
The present study evaluates the effect of protein source (dipeptides, free amino acids, and intact protein) on development and growth of Salmonid fish alevin. Specifically, we follow the expression of oligopeptide transporter protein PepT1 in the intestine of rainbow trout (Oncorhynchus mykiss). Fish were fed exogenously one of four diets: three formulated (lysyl–glycine dipeptide supplemented diet — PP, free lysine and glycine supplemented diet — AA, control diet with no lysine — CON) or commercial starter (Aller Futura — AF). Fish increased mean body weight 8 fold with PP- and AA-supplemented diets resulting in significantly higher weight gain than fish fed CON. Statistical analysis revealed a significant increase in relative PepT1 expression of fish fed experimental diets. Immunohistochemical staining with PepT1 antibody showed the presence of the transporter protein in the brush border membrane of the proximal intestinal enterocytes of fish from all experimental groups. Leptin immunoreactivity occurred not only in the gastric glands but also in proximal intestine and pyloric caeca of fish fed PP, AA and AF diets. Leptin immunoreactivity was also observed in hepatocyte cytoplasm and pancreatic acinar cells. Gastrin/CCK immunoreactive cells were present in the proximal intestine and pyloric caeca.  相似文献   

4.
Electrophysiological and biophysical analyses were used to compare the partial and complete transport cycles of the intestinal oligopeptide transporter PepT1 among three species (seabass, zebrafish and rabbit). On the whole, the presteady-state currents of the fish transporters were similar to each other. Rabbit PepT1 differed from the fish transporters by having slower-decaying currents, and the charge vs. potential (Q/V) and time constant vs. potential (τ/V) curves shifted to more positive potentials. All of the isoforms were similarly affected by external pH, showing acidity-induced slowing of the transients and positive shifts in the Q/V and τ/V curves. Analysis of the pH-dependence of the unidirectional rates of the intramembrane charge movement suggested that external protonation of the protein limits the speed of this process in both directions. The complete cycle of the transporter was studied using the neutral dipeptide Gly-Gln. Michaelis-Menten analysis confirmed that, in all species, acidity significantly increases the apparent affinity for the substrate but does not strongly impact maximal transport current. Simulations using a kinetic model incorporating the new findings showed good agreement with experimental data for all three species, both with respect to the presteady-state and the transport currents.  相似文献   

5.
During digestion, dietary proteins cleaved in di and tri-peptides are translocated from the intestinal lumen into the enterocytes via PepT1 (SLC15A1) using an inwardly directed proton electrochemical gradient. The kinetic properties in various PepT1 orthologs (Dicentrarchus labrax, Oryctolagus cuniculus, Danio rerio) have been explored to determine the transport efficiency of different combinations of lysine, methionine, and glycine. Species-specific differences were observed. Lys-Met resulted the best substrate at all tested potentials in sea bass and rabbit PepT1, whereas in the zebrafish transporter all tested dipeptides (except Gly-Lys) elicited similar currents independently on the charge position or amino acid composition. For the sea bass and rabbit PepT1, kinetic parameters, K0.5 and Imax and their ratio, show the importance of the position of the charged lysine in the peptide. The PepT1 transporter of these species has very low affinity for Lys-Lys and Gly-Lys; this reduces the transport efficiency which is instead higher for Lys-Met and Lys-Gly. PepT1 from zebrafish showed relatively high affinity and excellent transport efficiency for Met-Lys and Lys-Met. These data led us to speculate about the structural determinants involved in substrate interaction according to the model proposed for this transporter.  相似文献   

6.
Peptide transporter 1 (SLC15A1, PepT1), excitatory amino acid transporter 3 (SLC1A1, EAAT3) and cationic amino acid transporter 1 (SLC7A1, CAT1) were identified as genes responsible for the transport of small peptides and amino acids. The tissue expression pattern of rabbit (SLC15A1, SLC7A1 and SLC1A1) across the digestive tract remains unclear. The present study investigated SLC15A1, SLC7A1 and SLC1A1 gene expression patterns across the digestive tract at different stages of development and in response to dietary protein levels. Real time-PCR results indicated that SLC15A1, SLC7A1 and SLC1A1 genes throughout the rabbits’ entire development and were expressed in all tested rabbit digestive sites, including the stomach, duodenum, jejunum, ileum, colon and cecum. Furthermore, SLC7A1 and SLC1A1 mRNA expression occurred in a tissue-specific and time-associated manner, suggesting the distinct transport ability of amino acids in different tissues and at different developmental stages. The most highly expressed levels of all three genes were in the duodenum, ileum and jejunum in all developmental stages. All increased after lactation. With increased dietary protein levels, SLC7A1 mRNA levels in small intestine and SLC1A1 mRNA levels in duodenum and ileum exhibited a significant decreasing trend. Moreover, rabbits fed a normal level of protein had the highest levels of SLC15A1 mRNA in the duodenum and jejunum (P<0.05). In conclusion, gene mRNA differed across sites and with development suggesting time and sites related differences in peptide and amino acid absorption in rabbits. The effects of dietary protein on expression of the three genes were also site specific.  相似文献   

7.
The partial and complete cycle of the intestinal pH-dependent oligopeptide transporter PepT1 from three species (seabass, zebrafish and rabbit) were studied using an electrophysiological approach and a biophysical analysis, in order to identify similarities and differences. On the whole the presteady state currents of the fish transporters were similar to each other, while presenting some quantitative differences with respect to rabbit PepT1: this last form showed slower decaying currents and the charge vs. potential (Q/V) and time constant vs. potential (τ/V) curves shifted to more positive potentials. All isoforms were similarly affected by external pH, showing acidity-induced slowing of the transients and positive shifts in the Q/V and τ/V curves. Analysis of the pH dependence of the unidirectional rates of the intramembrane charge movement suggested that external protonation of the protein limits the speed of this process in both directions. The complete cycle of the transporter was studied using the neutral dipeptide Gly-Gln. Michaelis-Menten analysis confirmed that in all species the apparent affinity for the substrate is significantly increased by acidity, while the maximal transport current is not strongly affected. Simulations using a kinetic model incorporating the new findings show good agreement with experimental data for all three species both with respect to the presteady-state and transport currents.  相似文献   

8.
The study of the properties of the PepT1 proton-dependent oligopeptide transport system in the fish intestine is a promising direction to solve the problem of the replacement of dietary proteins in aquaculture. At the same time, some publications provide direct evidence for the close relationship of the processes of oligopeptide absorption in the fish gut with the parameters of plastic metabolism in various organs and tissues, especially in the early stages of ontogeny. The published data suggest that the food value of synthetic oligopeptides for fish may be increased by including amino acids that are growth limiting for a given tissue in the early stages of ontogeny of a fish species. Finding the parameters of the affinity of individual substrates (oligopeptides) to the PepT1 transport system in fish will contribute to solving this problem in aquaculture.  相似文献   

9.
10.
Amino acids, a critical energy source for the intestinal epithelial cells, are more efficiently assimilated in the normal intestine via peptide co-transporters such as proton:dipeptide co-transport (such as PepT1). Active uptake of a non-hydrolyzable dipeptide (glycosarcosine) was used as a substrate and PepT1 was found to be present in normal villus, but not crypt cells. The mRNA for this transporter was also found in villus, but not crypt cells from the normal rabbit intestine. PepT1 was significantly reduced in villus cells also diminished in villus cell brush border membrane vesicles both from the chronically inflamed intestine. Kinetic studies demonstrated that the mechanism of inhibition of PepT1 during chronic enteritis was secondary to a decrease in the affinity of the co-transporter for the dipeptide without an alteration in the maximal rate of uptake (Vmax). Northern blot studies also demonstrated unaltered steady state mRNA levels of this transporter in the chronically inflamed intestine. Proton dipeptide transport is found in normal intestinal villus cells and is inhibited during chronic intestinal inflammation. The mechanism of inhibition is secondary to altered affinity of the co-transporter for the dipeptide.  相似文献   

11.
寡肤转运蛋白(PepT2,peptide transporter,SLC15A2)是哺乳动物体内能够转运二肤、三肽的蛋白.研究表明,一些类肽的小分子药物也是PepT2的底物,但PepT2的结构与生物学功能尚待研究.建立稳定表达PepT2的表达体系是研究PepT2的重要环节.根据GenBank中人PepT2基因序列,借助Primer5.0设计了1对寡核苷酸引物,经PCR合成长达2 190bp的目的序列,通过重组构建pET30a(+)/PepT2表达质柱,测序分析确认目的基因中的3个碱基发生突变.初步研究了pET30a(+)/PepT2在大肠杆菌BL21(DE3)pLysS中的表达,为PepT2原核表达的进一步科研和实际应用奠定了基础.  相似文献   

12.

Background

Aberrations in about 10–15% of X-chromosome genes account for intellectual disability (ID); with a prevalence of 1–3% (Gécz et al., 2009 [1]). The SLC6A8 gene, mapped to Xq28, encodes the creatine transporter (CTR1). Mutations in SLC6A8, and the ensuing decrease in brain creatine, lead to co-occurrence of speech/language delay, autism-like behaviors and epilepsy with ID. A splice variant of SLC6A8SLC6A8C, containing intron 4 and exons 5–13, was identified. Herein, we report the identification of a novel variant — SLC6A8D, and functional relevance of these isoforms.

Methods

Via (quantitative) RT-PCR, uptake assays, and confocal microscopy, we investigated their expression and function vis-à-vis creatine transport.

Results

SLC6A8D is homologous to SLC6A8C except for a deletion of exon 9 (without occurrence of a frame shift). Both contain an open reading frame encoding a truncated protein but otherwise identical to CTR1. Like SLC6A8, both variants are predominantly expressed in tissues with high energy requirement. Our experiments reveal that these truncated isoforms do not transport creatine. However, in SLC6A8 (CTR1)-overexpressing cells, a subsequent infection (transduction) with viral constructs encoding either the SLC6A8C (CTR4) or SLC6A8D (CTR5) isoform resulted in a significant increase in creatine accumulation compared to CTR1 cells re-infected with viral constructs containing the empty vector. Moreover, transient transfection of CTR4 or CTR5 into HEK293 cells resulted in significantly higher creatine uptake.

Conclusions

CTR4 and CTR5 are possible regulators of the creatine transporter since their overexpression results in upregulated CTR1 protein and creatine uptake.

General significance

Provides added insight into the mechanism(s) of creatine transport regulation.  相似文献   

13.
The intestinal absorption of di- and tri-peptides generally occurs via the oligopeptide transporter, PepT1. This study evaluates the expression of PepT1 in larval Atlantic cod (Gadus morhua) during the three weeks following the onset of exogenous feeding. Larval Atlantic cod were fed either wild captured zooplankton or enriched rotifers. cDNA was prepared from whole cod larvae preceding first feeding and at 1000 each Tuesday and Thursday for the following three weeks. Spatial and temporal expression patterns of PepT1 mRNA were compared between fish consuming the two prey types using in situ hybridization and quantitative real-time PCR. Results indicated that PepT1 mRNA was expressed prior to the onset of exogenous feeding. In addition, PepT1 was expressed throughout the digestive system except the esophagus and sphincter regions. Expression slightly increased following first-feeding and continued to increase throughout the study for larvae feeding on both prey types. When comparing PepT1 expression in larvae larger than 0.15-mg dry mass with expression levels in larvae prior to feeding, no differences were detected for larvae fed rotifers, but the larvae fed zooplankton had significantly greater PepT1 expression at the larger size. In addition, PepT1 expression in the zooplankton fed larvae larger than 0.15-mg dry mass had significantly greater expression than rotifer fed larvae of a similar weight. Switching prey types did not affect PepT1 expression. These results indicate that Atlantic cod PepT1 expression was slightly different relative to dietary treatment during the three weeks following first-feeding. In addition, PepT1 may play an important role in the larval nutrition since it is widely expressed in the digestive tract.  相似文献   

14.
15.
The proton-coupled uptake of di- and tri-peptides is the major route of dietary nitrogen absorption in the intestine and of reabsorption of filtered protein in the kidney. In addition, the transporters involved, PepT1 (SLC15a1) and PepT2 (SLC15a2), are responsible for the uptake and tissue distribution of a wide range of pharmaceutically important compounds, including β-lactam antibiotics, angiotensin-converting enzyme inhibitors, anti-cancer and anti-viral drugs. PepT1 and PepT2 are large proteins, with over 700 amino acids, and to date there are no reports of their crystal structures, nor of those of related proteins from lower organisms. Therefore there is virtually no information about the protein 3-D structure, although computer-based approaches have been used to both model the transmembrane domain (TM) layout and to produce a substrate binding template. These models will be discussed, and a new one proposed from homology modeling rabbit PepT1 to the recently crystallized bacterial transporters LacY and GlpT. Understanding the mechanism by which PepT1 and PepT2 bind and transport their substrates is of great interest to researchers, both in academia and in the pharmaceutical industries.  相似文献   

16.
The presence of multiple oligopeptide transporters in brain has generated considerable interest as to their physiological role in neuropeptide homeostasis, pharmacologic importance, and potential as a target for drug delivery through the blood-brain and blood-cerebrospinal fluid barriers. To understand further the purpose of specific peptide transporters in brain, we have generated PEPT2-deficient mice by targeted gene disruption. Homozygous PepT2 null mice lacked expression of PEPT2 mRNA and protein in choroid plexus and kidney, tissues in which PepT2 is normally expressed, whereas heterozygous mice displayed PepT2 expression levels that were intermediate between those of wild-type and homozygous null animals. Mutant PepT2 null mice were found to be viable, grew to normal size and weight, and were without obvious kidney or brain abnormalities. Notwithstanding the lack of apparent biological effects, the proton-stimulated uptake of 1.9 microm glycylsarcosine (a model, hydrolysis-resistant dipeptide) in isolated choroid plexus was essentially ablated (i.e. residual activity of 10.9 and 3.9% at 5 and 30 min, respectively). These novel findings provide strong evidence that, under the experimental conditions of this study, PEPT2 is the primary member of the peptide transporter family responsible for dipeptide uptake in choroid plexus tissue.  相似文献   

17.
18.
19.
Two mutants of Escherichia coli K-12, defective in the oligopeptide and dipeptide transport system, are described. A mutant defective in the oligopeptide transport system (opp-1) was isolated as resistant to the inhibitory action of triornithine; this mutant is also resistant to glycylglycylvaline and does not concentrate (14)C-glycylglycylglycine, although it is still as sensitive as the parental strain to glycylvaline and valine. Starting from the opp-1 strain, a mutant defective also in the dipeptide transport system (dpp-1) was isolated; this mutant is resistant to the inhibitory action of glycylvaline, valylleucine, and leucylvaline and does not concentrate (14)C-glycylglycine, although it is still as sensitive as the parental strain to valine. The apparent kinetic constants for oligopeptide and dipeptide transport were measured. The opp marker is co-transducible with trp at 27 min on the E. coli genetic map. The dpp locus is separated from opp and is located between proC (10 min) and opp.  相似文献   

20.
The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na+ and Cl in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in hypersalinity may be in part related to its ability to up-regulate key ion transporters in the posterior intestine. The findings pave the way for future iono-regulatory studies on the Mozambique tilapia esophageal-gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号