首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several mutations within the BRICHOS domain of surfactant protein C (SP-C) have been linked to interstitial lung disease. Recent studies have suggested that these mutations cause misfolding of the proprotein (proSP-C), which initiates the unfolded protein response to resolve improper folding or promote protein degradation. We have reported that in vitro expression of one of these proteins, the exon 4 deletion mutant (hSP-C(Deltaexon4)), causes endoplasmic reticulum (ER) stress, inhibits proteasome function, and activates caspase-3-mediated apoptosis. To further elucidate mechanisms and common pathways for cellular dysfunction, various assays were performed by transiently expressing two SP-C BRICHOS domain mutant (BRISPC) proteins (hSP-C(Deltaexon4), hSP-C(L188Q)) and control proteins in lung epithelium-derived A549 and kidney epithelium-derived (HEK-293) GFP(u)-1 cell lines. Compared with controls, cells expressing either BRICHOS mutant protein consistently exhibited increased formation of insoluble aggregates, enhanced promotion of inositol-requiring enzyme 1-dependent splicing of X-box binding protein-1 (XBP-1), significant inhibition of proteasome activity, enhanced induction of mitochondrial cytochrome c release, and increased activations of caspase-4 and caspase-3, leading to apoptosis. These results suggest common cellular responses, including initiation of cell-death signaling pathways, to these lung disease-associated BRISPC proteins.  相似文献   

2.

Background

Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects.

Methods

SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide.

Results

Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space.

Conclusions

We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP-C deficiency associated ILD and provide insight into the mechanisms by which drugs currently used in ILD therapy act.  相似文献   

3.
4.
《Cellular signalling》2014,26(2):287-294
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with rapid attenuation of the IRE1α and ATF6 pathways but persistent activation of the PERK branch of the unfolded protein response (UPR) in cells. However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that the kinetics and durations of activation of the UPR pathways are deregulated in melanoma cells undergoing ER stress. We show here that the IRE1α and ATF6 pathways are sustained along with the PERK signaling in melanoma cells subjected to pharmacological ER stress, and that this is, at least in part, due to increased activation of the MEK/ERK pathway. In contrast to an initial increase followed by rapid reduction in activation of IRE1α and ATF6 signaling in control cells that were relatively sensitive to ER stress-induced apoptosis, activation of IRE1α and ATF6 by the pharmacological ER stress inducer tunicamycin (TM) or thapsigargin (TG) persisted in melanoma cells. On the other hand, the increase in PERK signaling lasted similarly in both types of cells. Sustained activation of IRE1α and ATF6 signaling played an important role in protecting melanoma cells from ER stress-induced apoptosis, as interruption of IRE1α or ATF6 rendered melanoma cells sensitive to apoptosis induced by TM or TG. Inhibition of MEK partially blocked IRE1α and ATF6 activation, suggesting that MEK/ERK signaling contributed to sustained activation of IRE1α and ATF6. Taken together, these results identify sustained activation of the IRE1α and ATF6 pathways of the UPR driven by the MEK/ERK pathway as an important protective mechanism against ER stress-induced apoptosis in melanoma cells.  相似文献   

5.
Mutations in the gene encoding SP-C (surfactant protein C; SFTPC) have been linked to interstitial lung disease (ILD) in children and adults. Expression of the index mutation, SP-C(Deltaexon4), in transiently transfected cells and type II cells of transgenic mice resulted in misfolding of the proprotein, activation of endoplasmic reticulum (ER) stress pathways, and cytotoxicity. In this study, we show that stably transfected cells adapted to chronic ER stress imposed by the constitutive expression of SP-C(Deltaexon4) via an NF-kappaB-dependent pathway. However, the infection of cells expressing SP-C(Deltaexon4) with respiratory syncytial virus resulted in significantly enhanced cytotoxicity associated with accumulation of the mutant proprotein, pronounced activation of the unfolded protein response, and cell death. Adaptation to chronic ER stress imposed by misfolded SP-C was associated with increased susceptibility to viral-induced cell death. The wide variability in the age of onset of ILD in patients with SFTPC mutations may be related to environmental insults that ultimately overwhelm the homeostatic cytoprotective response.  相似文献   

6.
Cells respond to endoplasmic reticulum (ER) stress through the unfolded protein response (UPR), autophagy and cell death. In this study we utilized casp9+/+ and casp9−/− MEFs to determine the effect of inhibition of mitochondrial apoptosis pathway on ER stress-induced-cell death, UPR and autophagy. We observed prolonged activation of UPR and autophagy in casp9−/− cells as compared with casp9+/+ MEFs, which displayed transient activation of both pathways. Furthermore we showed that while casp9−/− MEFs were resistant to ER stress, prolonged exposure led to the activation of a non-canonical, caspase-mediated mode of cell death.  相似文献   

7.
The corpus luteum (CL) is a transient endocrine organ. Development, maintenance, and regression of CL are effectively controlled by dynamic changes in gene expression. However, it is unknown what types of gene are affected during the CL life span of the estrous cycle in bovine. Here, we determined whether unfolded protein response (UPR) signaling via eIF2α/ATF4/GADD34, p90ATF6/p50ATF6, and IRE1/XBP1, which is a cellular stress response associated with the endoplasmic reticulum (ER), is involved in the bovine CL life span. Our results indicated that expression of Grp78/Bip, the master UPR regulator, was increased during the maintenance stage and rapidly decreased at the regression stage. Additionally, UPR signaling pathways genes were found to be involved in luteal phase progression during the estrous cycle. Our findings suggested that Grp78/Bip, ATF6, and XBP1 act as ER chaperones for initiating CL development and maintaining the CL. In addition, we investigated whether ER stress-mediated apoptosis is occurred through three UPR signaling pathways in CL regression stage. Interestingly, pIRE1 and CHOP were found to be involved in both the adaptive response and ER stress-mediated apoptosis. During the CL regression stage, increased expression of pJNK and CHOP, two components of ER stress-mediated apoptotic cascades, occurred before increased level of cleaved caspase 3 were observed. The present investigation was performed to identify a functional link between UPR signaling and CL life span during the bovine estrous cycle. Taken together, results from this study demonstrated that UPR protein/gene expression levels were different at various stages of the bovine CL life span. Variations in the expression of these protein/genes may play important roles in luteal stage progression during the estrous cycle.  相似文献   

8.
9.
10.
11.
12.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces the stress response to protect cells against toxicity by the unfolded protein response (UPR), heat shock response (HSR), and ER-associated degradation pathways. Here, we found that over-production of C-terminally truncated multi-transmembrane (MTM) mutant proteins triggers HSR, but not UPR, and clearance of yeast prions [PSI+] and [URE3]. One of the mutant MTM proteins, Dip5ΔC-v82, produces a disabled amino-acid permease. Fluorescence microscopy analysis revealed abnormal accumulation of Dip5ΔC-v82 in the ER. Importantly, the mutant defective in the GET pathway, which functions for ER membrane insertion of tail-anchored proteins, failed to translocate Dip5ΔC-v82 to the ER and disabled Dip5ΔC-v82-mediated prion clearance. These findings suggest that the GET pathway plays a pivotal role in quality assurance of MTM proteins, and entraps misfolded MTM proteins into ER compartments, leading to loss-of-prion through a yet undefined mechanism.  相似文献   

13.
Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.  相似文献   

14.
15.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

16.
17.
Alzheimer’s disease (AD) is characterized by the deposition of aggregated amyloid-beta (Aβ), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of neuronal apoptosis and inflammation by Aβ-induced ER stress to exercise training are not fully understood. Here, we demonstrated that treadmill exercise (TE) prevented PS2 mutation-induced memory impairment and reduced Aβ-42 deposition through the inhibition of β-secretase (BACE-1) and its product, C-99 in cortex and/or hippocampus of aged PS2 mutant mice. We also found that TE down-regulated the expression of GRP78/Bip and PDI proteins and inhibited activation of PERK, eIF2α, ATF6α, sXBP1 and JNK-p38 MAPK as well as activation of CHOP, caspase-12 and caspase-3. Moreover, TE up-regulated the expression of Bcl-2 and down-regulated the expressions of Bax in the hippocampus of aged PS2 mutant mice. Finally, the generation of TNFα and IL-1α and the number of TUNEL-positive cells in the hippocampus of aged PS2 mutant mice was also prevented or decreased by TE. These results showed that TE suppressed the activation of UPR signaling pathways as well as inhibited the apoptotic pathways of the UPR and inflammatory response following Aβ-induced ER stress. Thus, therapeutic strategies that modulate Aβ-induced ER stress through TE could represent a promising approach for the prevention or treatment of AD.  相似文献   

18.
19.
Understanding the mechanisms responsible for the resistance against chemotherapy-induced cell death is still of great interest since the number of patients with cancer increases and relapse is commonly observed. Indeed, the development of hypoxic regions as well as UPR (unfolded protein response) activation is known to promote cancer cell adaptive responses to the stressful tumor microenvironment and resistance against anticancer therapies. Therefore, the impact of UPR combined to hypoxia on autophagy and apoptosis activation during taxol exposure was investigated in MDA–MB-231 and T47D breast cancer cells. The results showed that taxol rapidly induced UPR activation and that hypoxia modulated taxol-induced UPR activation differently according to the different UPR pathways (PERK, ATF6, and IRE1α). The putative involvement of these signaling pathways in autophagy or in apoptosis regulation in response to taxol exposure was investigated. However, while no link between the activation of these three ER stress sensors and autophagy or apoptosis regulation could be evidenced, results showed that ATF4 activation, which occurs independently of UPR activation, was involved in taxol-induced autophagy completion. In addition, an ATF4-dependent mechanism leading to cancer cell adaptation and resistance against taxol-induced cell death was evidenced. Finally, our results demonstrate that expression of ATF4, in association with hypoxia-induced genes, can be used as a biomarker of a poor prognosis for human breast cancer patients supporting the conclusion that ATF4 might play an important role in adaptation and resistance of breast cancer cells to chemotherapy in hypoxic tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号