首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source.  相似文献   

2.
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.  相似文献   

3.
The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications.  相似文献   

4.
Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA.  相似文献   

5.
The identification, production, and potential electron conductivity of bacterial extracellular nanofilaments is an area of great study, specifically in Shewanella oneidensis MR-1. While some studies focus on nanofilaments attached to the cellular body, many studies require the removal of these nanofilaments for downstream applications. The removal of nanofilaments from S. oneidensis MR-1 for further study requires not only that the nanofilaments be detached, but also for the cell bodies to remain intact. This is a study to both qualitatively (AFM) and quantitatively (LC/MS-MS) assess several nanofilament shearing methods and determine the optimal procedure. The best method for nanofilament removal, as judged by maximizing extracellular filamentous proteins and minimizing membrane and intracellular proteins, is vortexing a washed cell culture for 10 min.  相似文献   

6.
Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g. 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologues might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase.  相似文献   

7.
In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni–Fe] hydrogenase (HyaB) and periplasmic [Fe–Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1. These findings suggest that HyaB and HydA can function as uptake hydrogenases that couple the oxidation of H2 to the reduction of amaranth to sustain cellular growth. This constitutes to our knowledge the first report of the involvement of [Fe-Fe] hydrogenase in a bacterial azoreduction process. Assays with respiratory inhibitors indicated that a menaquinone pool and different cytochromes were involved in the azoreduction process. High-performance liquid chromatography analysis revealed that flavin mononucleotide and riboflavin were secreted in culture supernatant by S. oneidensis MR-1 under H2-dependent conditions with concentration of 1.4 and 2.4 μmol g protein-1, respectively. These endogenous flavins were shown to significantly accelerate the reduction of amaranth at micromolar concentrations acting as electron shuttles between the cell surface and the extracellular azo dye. This work may facilitate a better understanding of the mechanisms of azoreduction by S. oneidensis MR-1 and may have practical applications for microbiological treatments of dye-polluted industrial effluents.  相似文献   

8.
Shewanella oneidensis MR-1 is a promising chassis organism for microbial electrosynthesis because it has a well-defined biochemical pathway (the Mtr pathway) that can connect extracellular electrodes to respiratory electron carriers inside the cell. We previously found that the Mtr pathway can be used to transfer electrons from a cathode to intracellular electron carriers and drive reduction reactions. In this work, we hypothesized that native NADH dehydrogenases form an essential link between the Mtr pathway and NADH in the cytoplasm. To test this hypothesis, we compared the ability of various mutant strains to accept electrons from a cathode and transfer them to an NADH-dependent reaction in the cytoplasm, reduction of acetoin to 2,3-butanediol. We found that deletion of genes encoding NADH dehydrogenases from the genome blocked electron transfer from a cathode to NADH in the cytoplasm, preventing the conversion of acetoin to 2,3-butanediol. However, electron transfer to fumarate was not blocked by the gene deletions, indicating that NADH dehydrogenase deletion specifically impacted NADH generation and did not cause a general defect in extracellular electron transfer. Proton motive force (PMF) is linked to the function of the NADH dehydrogenases. We added a protonophore to collapse PMF and observed that it blocked inward electron transfer to acetoin but not fumarate. Together these results indicate a link between the Mtr pathway and intracellular NADH. Future work to optimize microbial electrosynthesis in S. oneidensis MR-1 should focus on optimizing flux through NADH dehydrogenases.  相似文献   

9.
In this work, the extracellular decolorization of aniline blue, a sulfonated triphenylmethane dye, by Shewanella oneidensis MR-1 was confirmed. S. oneidensis MR-1 showed a high capacity for decolorizing aniline blue even at a concentration of up to 1,000 mg/l under anaerobic conditions. Maximum decolorization efficiency appeared at pH?7.0 and 30 °C. Lactate was a better candidate of electron donor for the decolorization of aniline blue. The addition of nitrate, hydrous ferric oxide, or trimethylamine N-oxide all could cause a significant decline of decolorization efficiency. The Mtr respiratory pathway was found to be involved into the decolorization of aniline blue by S. oneidensis MR-1. The toxicity evaluation through phytotoxicity and genotoxicity showed that S. oneidensis MR-1 could decrease the toxicity of aniline blue during the decolorization process. Thus, this work may facilitate a better understanding on the degradation mechanisms of the triphenylmethane dyes by Shewanella and is beneficial to their application in bioremediation.  相似文献   

10.
A DNA fragment containing a promoter-operator and structural parts of the uridine phosphorylase gene from Shewanella oneidensis MR-1 was cloned. Cross-heterological expression of the udp genes from Sh. oneidensis MR-1 and Escherichia coli under the control of authentic regulatory regions is shown. The UDP protein accumulates in an active form in the cytoplasmic fraction of cells. The recombinant UDP protein from Sh. oneidensis MR-1 obtained by heterological expression was isolated and characterized. E. coli udp gene promoter activity was observed during heterological expression in Sh. oneidensis MR-1 cells under both aerobic and anaerobic conditions.  相似文献   

11.
The identification, production, and potential electron conductivity of bacterial extracellular nanofilaments is an area of great study, specifically in Shewanella oneidensis MR-1. While some studies focus on nanofilaments attached to the cellular body, many studies require the removal of these nanofilaments for downstream applications. The removal of nanofilaments from S. oneidensis MR-1 for further study requires not only that the nanofilaments be detached, but also for the cell bodies to remain intact. This is a study to both qualitatively (AFM) and quantitatively (LC/MS-MS) assess several nanofilament shearing methods and determine the optimal procedure. The best method for nanofilament removal, as judged by maximizing extracellular filamentous proteins and minimizing membrane and intracellular proteins, is vortexing a washed cell culture for 10 min.  相似文献   

12.
Although members of the genus Shewanella have common features (e.g., the presence of decaheme c-type cytochromes [c-cyts]), they are widely variable in genetic and physiological features. The present study compared the current-generating ability of S. loihica PV-4 in microbial fuel cells (MFCs) with that of well-characterized S. oneidensis MR-1 and examined the roles of c-cyts in extracellular electron transfer. We found that strains PV-4 and MR-1 exhibited notable differences in current-generating mechanisms. While the MR-1 MFCs maintained a constant current density over time, the PV-4 MFCs continued to increase in current density and finally surpassed the MR-1 MFCs. Coulombic efficiencies reached 26% in the PV-4 MFC but 16% in the MR-1 MFCs. Although both organisms produced quinone-like compounds, anode exchange experiments showed that anode-attached cells of PV-4 produced sevenfold more current than planktonic cells in the same chamber, while planktonic cells of MR-1 produced twice the current of the anode-attached cells. Examination of the genome sequence indicated that PV-4 has more c-cyt genes in the metal reductase-containing locus than MR-1. Mutational analysis revealed that PV-4 relied predominantly on a homologue of the decaheme c-cyt MtrC in MR-1 for current generation, even though it also possesses two homologues of the decaheme c-cyt OmcA in MR-1. These results suggest that current generation in a PV-4 MFC is in large part accomplished by anode-attached cells, in which the MtrC homologue constitutes the main path of electrons toward the anode.Some species of dissimilatory metal-reducing bacteria (DMRB) are able to reduce solid metal oxides as terminal electron acceptors and generate currents in microbial fuel cells (MFCs) (2, 11, 14, 30, 46). Although mixed cultures are often used in MFC experiments (13), studies seeking a mechanistic understanding of electron transfer to electrode surfaces typically target pure cultures of such DMRB, due to the complexity in microbial communities. Presently, two model DMRB, Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA (2, 3, 12, 18, 31), are used in most investigations.S. oneidensis MR-1 is a metabolically diverse DMRB that has been studied extensively for its potential use in bioremediation applications. For this reason, MR-1 was the first Shewanella species to have its genome completely sequenced and annotated (10). In addition, since the first report in 1999 when this microorganism was shown to have the ability to transfer electrons to the electrode without an exogenously added mediator (14), it has also become one of the model organisms for the study of electron transfer mechanisms in MFCs.Although the molecular mechanisms for extracellular electron transfer have not yet been elucidated fully, c-type cytochromes (c-cyts) appear to be the key cellular components involved in this process (38). In S. oneidensis MR-1, OmcA and MtrC are outer membrane (OM), decaheme c-cyts that are considered to be involved in the direct (directly attached) electron transfer to solid metal oxides and anodes of MFCs (9, 20, 22, 23, 47). Several pieces of evidence suggest that OmcA and MtrC form a complex and act in a cooperative manner (33, 37, 42), and these results correlate with the fact that the genes encoding these proteins constitute an operon-like cluster in the chromosome (1). It has also been shown that MtrC and OmcA have overlapping functions as terminal reductases of metal oxides (25, 38). OmcA and MtrC are also present on the surface of nanowires and may be involved in the long-range transfer of electrons (8). In addition to direct electron transfer, MR-1 has the ability to produce water-soluble electron-shuttle compounds (quinones and flavins) that are involved in the mediated electron transfer from cells to distant solid electron acceptors (metal oxides or MFC anodes) (21, 27, 44).Recently, the genome sequences of nearly 20 Shewanella strains have been completed and annotated, opening the door to study the diversity of their extracellular electron transfer mechanisms. A comparison of their genomes has shown that although they have some consensus OM c-cyt genes, variations exist in the number and order of these genes in their metal reductase-containing loci (6). One such species is S. loihica strain PV-4, which was recently isolated from an iron-rich microbial mat near a deep-sea hydrothermal vent located on the Loihi Seamount in Hawaii (7, 32). The phenotypic and phylogenetic characteristics of PV-4 were determined, with a subsequent study focusing on the metal reduction and iron biomineralization capabilities of this bacterium (32). Initial experiments performed in our laboratory revealed that PV-4 developed a c-cyt-dependent deep red color that was much more striking than that of strain MR-1 when grown anaerobically with iron oxide as the terminal electron acceptor (26). This allowed us to assume that PV-4 could have a high extracellular electron transfer ability. Accordingly, the present study evaluated the current-producing ability of strain PV-4 in MFCs and examined the roles of some c-cyts in extracellular electron transfer. Special attention was paid to the comparison of PV-4 with MR-1 to reveal differences in mechanisms for extracellular electron transfer. We report herein differences between these strains in the roles of OM c-cyts for extracellular electron transfer, the behaviors and metabolic patterns of MFC, and the resultant MFC performances.  相似文献   

13.
Electrogenicity of Shewanella oneidensis MR-1 mutants FRS1 and FRB1 with reducing activity 30–40% higher than in the original strain was studied in various microbial fuel cells (MFC) developed in the course of the work. The voltage and current density developed by the mutants were 1.7 times higher than in the case of S. oneidensis MR-1. A correlation was found between reducing activity of the cells and the voltage and current density developed in MFC. The possibility for enhanced bioelectricity production in MFC by genetic modification of S. oneidensis MR-1 was demonstrated.  相似文献   

14.
面对日益严峻的能源紧缺与环境污染形势,电活性微生物(electroactive microorganisms)的电催化过程为实现绿色生产提供了新的思路。奥奈达希瓦氏菌具有独特的呼吸方式和电子传递能力,在微生物燃料电池、增值化学品的生物电合成、金属废物处理和环境修复系统等领域有着广泛的应用。奥奈达希瓦氏菌(Shewanella oneidensis MR-1)电活性生物被膜是实现电活性微生物电子传递过程的优良载体,其形成过程十分复杂且受到多种因素的影响和调控,在增强细菌环境抗逆性、提高电子传递效率等多方面发挥着十分重要的作用。本文较为系统地综述了奥奈达希瓦氏菌生物被膜的形成过程、影响因素及其在生物能源、生物修复和生物传感中的相关应用,为进一步实现其在更多领域的应用提供了理论基础。  相似文献   

15.
The mutants of Shewanella oneidensis MR-1 resistant to fosfomycin, a toxic analogue of phosphoenolpyruvate, were obtained. The mutants exhibited increased reducing activity and higher rates of lactate utilization. A correlation was shown between the rates of metabolism of oxidized substrates and the rate of reduction of methylene blue, a mediator of electron transport. The mutants of S. oneidensis MR-1 may be used in microbial fuel cells for intensification of energy production from organic compounds.  相似文献   

16.
An expression plasmid was constructed in order to carry out heterologous expression of the gene of the NAD+-dependent formate dehydrogenase (FDH) from methylotrophic bacterium Moraxella sp. in the cells of Shewanella oneidensis MR-1 under aerobic and anaerobic conditions. In both modes of cell cultivation, recombinant FDH activity was revealed in the cell lysate of the transformants. In the medium with la? tate as a carbon source, the rate of anaerobic respiration determined as the rate of conversion of fumarate (the electron acceptor) to succinate was higher in the transformant with recombinant FDH. Anaerobic cultivation of the FDH-containing transformant of S. oneidensis MR-1 in a microbial fuel cell (MFC) revealed increased current density.  相似文献   

17.
电活性微生物奥奈达希瓦氏菌的胞外电子传递(extracellular electron transfer,EET)在污染物降解、环境修复、生物电化学传感、能源利用等方面具有广泛的应用潜力;四血红素细胞色素CctA (small tetraheme cytochrome)是希瓦氏菌周质空间中最丰富的蛋白质之一,能够参与多种氧化还原过程,但目前对CctA在EET中的行为和机理认识仍然有限。【目的】研究阐明CctA蛋白在希瓦氏菌模式菌株MR-1周质空间以偶氮染料作为电子受体的EET中的作用,补充和拓展希瓦氏菌的厌氧呼吸产能机制。【方法】以周质还原型偶氮染料甲基橙(methyl orange,MO)作为电子受体,在mteal reduction (Mtr)蛋白缺失菌株Δmtr中研究MO的周质还原特点,并通过基因敲除和回补表达研究CctA蛋白在周质电子传递中的作用。【结果】在缺失Mtr通道的情况下,细胞色素CctA可以介导周质空间的电子传递而还原MO。重组表达CctA在低水平时,MO在周质空间中的还原速率与其表达水平呈正相关,更高水平的CctA表达无助于进一步提高MO的还原速率。蛋白膜伏安结果展示了CctA与周质空间内其他高电位氧化还原蛋白的显著区别,可能参与构成一条低电位的MO还原通道。【结论】从分子动力学层面揭示了CctA在周质MO还原中的独特电子传递行为,为进一步推进对细菌周质电子传递机制的理解,以及通过合成生物学设计或改造胞外氧化还原系统、强化生物电化学在污染物降解中的应用提供了重要信息。  相似文献   

18.

Background

Type IV pili are widely expressed among Gram-negative bacteria, where they are involved in biofilm formation, serve in the transfer of DNA, motility and in the bacterial attachment to various surfaces. Type IV pili in Shewanella oneidensis are also supposed to play an important role in extracellular electron transfer by the attachment to sediments containing electron acceptors and potentially forming conductive nanowires.

Results

The potential nanowire type IV pilin PilBac1 from S. oneidensis was characterized by a combination of complementary structural methods and the atomic structure was determined at a resolution of 1.67 Å by X-ray crystallography. PilBac1 consists of one long N-terminal α-helix packed against four antiparallel β-strands, thus revealing the core fold of type IV pilins. In the crystal, PilBac1 forms a parallel dimer with a sodium ion bound to one of the monomers. Interestingly, our PilBac1 crystal structure reveals two unusual features compared to other type IVa pilins: an unusual position of the disulfide bridge and a straight α-helical section, which usually exhibits a pronounced kink. This straight helix leads to a distinct packing in a filament model of PilBac1 based on an EM model of a Neisseria pilus.

Conclusions

In this study we have described the first structure of a pilin from Shewanella oneidensis. The structure possesses features of the common type IV pilin core, but also exhibits significant variations in the α-helical part and the D-region.
  相似文献   

19.
Nanofilament production by Shewanella oneidensis MR-1 was evaluated as a function of lifestyle (planktonic vs. sessile) under aerobic and anaerobic conditions using different sample preparation techniques prior to imaging with scanning electron microscopy. Nanofilaments could be imaged on MR-1 cells grown in biofilms or planktonically under both aerobic and anaerobic batch culture conditions after fixation, critical point drying and coating with a conductive metal. Critical point drying was a requirement for imaging nanofilaments attached to planktonically grown MR-1 cells, but not for cells grown in a biofilm. Techniques described in this paper cannot be used to differentiate nanowires from pili or flagella.  相似文献   

20.
The Mtr respiratory pathway of Shewanella oneidensis strain MR-1 is required to effectively respire both soluble and insoluble forms of oxidized iron. Flavins (riboflavin and flavin mononucleotide) recently have been shown to be excreted by MR-1 and facilitate the reduction of insoluble substrates. Other Shewanella species tested accumulated flavins in supernatants to an extent similar to that of MR-1, suggesting that flavin secretion is a general trait of the species. External flavins have been proposed to act as both a soluble electron shuttle and a metal chelator; however, at biologically relevant concentrations, our results suggest that external flavins primarily act as electron shuttles for MR-1. Using deletion mutants lacking various Mtr-associated proteins, we demonstrate that the Mtr extracellular respiratory pathway is essential for the reduction of flavins and that decaheme cytochromes found on the outer surface of the cell (MtrC and OmcA) are required for the majority of this activity. Given the involvement of external flavins in the reduction of electrodes, we monitored current production by Mtr respiratory pathway mutants in three-electrode bioreactors under controlled flavin concentrations. While mutants lacking MtrC were able to reduce flavins at 50% of the rate of the wild type in cell suspension assays, these strains were unable to grow into productive electrode-reducing biofilms. The analysis of mutants lacking OmcA suggests a role for this protein in both electron transfer to electrodes and attachment to surfaces. The parallel phenotypes of Mtr mutants in flavin and electrode reduction blur the distinction between direct contact and the redox shuttling strategies of insoluble substrate reduction by MR-1.Shewanella oneidensis strain MR-1 (MR-1) is a facultative anaerobe capable of respiring a variety of substrates, including various metals and metal oxides, a phenotype that is important for bioremediation and metal cycling in natural environments (22, 53). At near-neutral pH, Fe(III) and Mn(IV) often are present as insoluble oxide minerals. Dissimilatory metal-reducing bacteria such as MR-1 have developed pathways to transfer electrons from the interior of the cell to these external terminal electron acceptors. In some bacteria, these pathways also can transfer electrons to electrodes, which can be harnessed for renewable energy and remote biosensor applications (23, 26, 27). Beyond increasing our understanding of this unusual process, applying anaerobic microbial extracellular respiration to new technologies requires a thorough understanding of the molecular dynamics and cellular physiology of electron source utilization (substrate oxidation) and the reduction of insoluble terminal electron acceptor(s). There are four proposed mechanisms to explain how insoluble substrates are reduced by Shewanella: (i) direct contact, (ii) electron shuttling, (iii) chelation, and (iv) electrically conductive appendages (reviewed in reference 18). We will focus on the first three strategies here.Flavins recently have been discovered to accelerate the reduction of both iron oxide minerals (51) and electrodes (30) by MR-1. Riboflavin (vitamin B2) is a precursor for the biosynthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) (13). Riboflavin and FMN both can be observed to build up in the supernatant of anaerobic and aerobically grown cultures of MR-1 (30, 51). However, the mechanism by which flavins enhance the rate of iron oxide mineral or electrode reduction is unknown, although recent work is consistent with a critical role for these compounds in mediating solid Fe(III) reduction by MR-1 (42). Since soluble (chelated) Fe(III) is reduced faster than insoluble Fe(III) by MR-1 (6), one possible explanation for the enhancement of insoluble iron reduction by flavins is increased available soluble iron via chelation (1, 2, 30). Flavins also may be utilized as redox-active compounds to traffic electrons between extracellular reductases on the surface of the cell and insoluble substrates (30, 51), a process termed electron shuttling (18, 39, 41). The chelation of the terminal electron acceptor during electrode reduction is not relevant when the anode is composed of graphite. Therefore, electron shuttling likely is responsible for the flavin enhancement of current production on poised-potential electrodes (30). However, it is unclear if the chelation of metals by flavins influences insoluble metal reduction by S. oneidensis (30).The Mtr pathway is required for the reduction of metals and electrodes (5, 6, 9, 17). Five primary protein components have been identified in this pathway: OmcA, MtrC, MtrA, MtrB, and CymA (47). Current models of electron transfer in MR-1 assume that electrons from carbon source oxidation are passed via the menaquinone pool to the inner membrane-anchored c-type cytochrome CymA (19, 31). These electrons then are transferred to a periplasmic c-type cytochrome, MtrA, and eventually to outer membrane (OM)-anchored c-type cytochromes MtrC and OmcA, which interact with an integral OM scaffolding protein, MtrB (32, 33, 43). These OM cytochromes then can reduce various substrates, including iron oxides and electrodes (8, 9, 12, 36, 47). Since the Mtr system is required by MR-1 to reduce many different substrates (18), it also could be capable of reducing extracellular flavins. Indeed, electron transfer to carbon electrodes is impaired in strains lacking Mtr pathway components (9, 17), which may be explained simply by a decreased ability to reduce extracellular flavins. The observation that Mtr mutants produce less current on electrodes than the wild type could be due to (i) less current generated per cell (either direct reduction or flavin mediated), (ii) decreased attachment to the electrode surface, (iii) differences in external flavin concentrations, or (iv) a combination of these three possibilities. Determining the specific activity (current produced per unit of attached biomass) of Mtr mutants on electrodes under conditions where flavin levels were controlled would allow for differentiation between these possibilities. To date, this kind of analysis has not been reported.The results presented here extend our knowledge of how S. oneidensis catalyzes the reduction of insoluble substrates. Experiments using a model iron chelator and electron shuttle are consistent with electron shuttling being the primary mechanism by which flavins enhance insoluble iron oxide reduction rates. Moreover, we demonstrate that MR-1 reduces extracellular flavins at physiologically relevant rates and that the Mtr pathway accounts for at least 95% of this activity. The specific activities of various mutant strains lacking Mtr pathway components on poised-potential electrodes also are reported. Our data suggest that MtrC is responsible for most of the electron transfer to carbon electrodes, while OmcA is involved in attachment and has a lesser role in electron transfer. These observations could have broader implications regarding the role of OmcA in the reduction of soluble and insoluble substrates (8, 9, 36).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号