首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(5):813-820
Ginsenosidase type I from Aspergillus niger g.48 can hydrolyze the 3-O- and 20-O-multi-glycosides of PPD-type ginsenosides. The enzyme molecular weight is approximately 74 kDa. When hydrolyzing the glycosides of Rb1, Rb3, Rb2 and Rc, the structures of which only differ in their terminal 20-O-glycosides, ginsenosidase type I hydrolyzes both the 3-O- and 20-O-glycosides of Rb1 and Rb3 using two pathways, but the enzyme first hydrolyzes the 3-O-glucosides of Rb2 and Rc using one pathway. One pathway of Rb1 hydrolyzes the 20-O-Glc of Rb1 to Rd→F2→C-K; another pathway hydrolyzes the 3-O-Glc of Rb1 to Gyp17→Gyp75→C-K. Two hydrolysis pathways are used to hydrolyze the 20-O-Xyl and the 3-O-Glc of Rb3. According to the enzyme reaction parameters Km, Vmax and V0 at a 10 mM substrate concentration, the enzyme hydrolysis velocity values decrease in the following order: the 20-O-Xyl of Rb3→Rd> the 20-O-Glc of Rb1→Rd> the 3-O-Glc of Rc> the 3-O-Glc of Rb2> the 3-O-Glc of Rd> the 3-O-Glc of Rb3→C-Mx1> the 3-O-Glc of Rb1→Gyp17> the 3-O-Glc of F2> the 3-O-Glc of 20(S)-Rg3.  相似文献   

2.
Herein, a novel ginsenosidase, named ginsenosidase type IV, hydrolyzing 6-O-multi-glycosides of protopanaxatrioltype ginsenosides (PPT), such as Re, R1, Rf, and Rg2, was isolated from the Aspergillus sp. 39g strain, purified, and characterized. Ginsenosidase type IV was able to hydrolyze the 6-O-alpha-L-(1-->2)-rhamnoside of Re and the 6-O-beta-D- (1-->2)-xyloside of R1 into ginsenoside Rg1. Subsequently, it could hydrolyze the 6-O-beta-D-glucoside of Rg1 into F1. Similarly, it was able to hydrolyze the 6-O-alpha-L-(1-->2)- rhamnoside of Rg2 and the 6-O-beta-D-(1-->2)-glucoside of Rf into Rh1, and then further hydrolyze Rh1 into its aglycone. However, ginsenosidase type IV could not hydrolyze the 3-O- or 20-O-glycosides of protopanaxadioltype ginsenosides (PPD), such as Rb1, Rb2, Rb3, Rc, and Rd. These exhibited properties are significantly different from those of glycosidases described in Enzyme Nomenclature by the NC-IUBMB. The optimal temperature and pH for ginsenosidase type IV were 40°C and 6.0, respectively. The activity of ginsenosidase type IV was slightly improved by the Mg(2+) ion, and inhibited by Cu(2+) and Fe(2+) ions. The molecular mass of the enzyme, based on SDS-PAGE, was noted as being approximately 56 kDa.  相似文献   

3.
罗艳  张静超 《生物工程学报》2023,39(11):4534-4549
Ⅳ型菌毛(type Ⅳ pili, TFP)作为细菌表面的重要蛋白结构,是细菌的感知器官及运动器官,在细菌生理学、细胞黏附、宿主细胞入侵、DNA摄取、蛋白质分泌、生物被膜形成、细胞运动和电子传递等方面发挥着多种作用。近年来,随着研究方法的深入和技术设备的发展,尤其是随着多种菌毛可视化工具的开发,越来越多的研究揭示了它在生命活动中的各种功能,大大加快了微生物单细胞领域的研究步伐。本文重点讨论了TFP可视化方法及在菌毛功能研究中的应用,为更好地研究和利用TFP功能提供更多的思路,为其未来在生物学、医学以及生态学中的应用提供一定的理论基础。  相似文献   

4.
5.
The type IV secretion system (TFSSs) is a multifunctional family of translocation pathways that mediate the transfer of DNA among bacteria and deliver DNA and proteins to eukaryotic cells during bacterial infections. Horizontal transmission has dominated the evolution of the TFSS, as demonstrated here by a lack of congruence between the tree topology inferred from components of the TFSS and the presumed bacterial species divergence pattern. A parsimony analysis suggests that conjugation represents the ancestral state and that the divergence from conjugation to secretion of effector molecules has occurred independently at multiple sites in the tree. The result shows that the nodes at which functional shifts have occurred coincide with those of horizontal gene transfers among distantly related bacteria. We suggest that it is the transfer between species that paved the way for the divergence of the TFSSs and discuss the general role of horizontal gene transfers for the evolution of novel gene functions.  相似文献   

6.
As mediators of adhesion, autoaggregation and bacteria‐induced plasma membrane reorganization, type IV pili are at the heart of Neisseria meningitidis infection. Previous studies have proposed that two minor pilins, PilV and PilX, are displayed along the pilus structure and play a direct role in mediating these effects. In contrast with this hypothesis, combining imaging and biochemical approaches we found that PilV and PilX are located in the bacterial periplasm rather than along pilus fibers. Furthermore, preventing exit of these proteins from the periplasm by fusing them to the mCherry protein did not alter their function. Deletion of the pilV and pilX genes led to a decrease in the number, but not length, of pili displayed on the bacterial surface indicating a role in the initiation of pilus biogenesis. By finely regulating the expression of a central component of the piliation machinery, we show that the modest reductions in the number of pili are sufficient to recapitulate the phenotypes of the pilV and pilX mutants. We further show that specific type IV pili‐dependent functions require different ranges of pili numbers.  相似文献   

7.
Human plasma fibronectin (pFN) contains a cryptic metalloprotease present in the collagen-binding domain. The enzyme could be generated and activated in the presence of Ca2+ from the purified 70-kDa pFN fragment produced by cathepsin D digestion. In this work we cloned and expressed the metalloprotease, designated FN type IV collagenase (FnColA), and a truncated variant (FnColB) in E. coli. The recombinant pFN protein fragment was isolated from inclusion bodies, and subjected to folding and autocatalytic degradation in the presence of Ca2+, and yielded an active enzyme capable of digesting gelatin, helical type II and type IV collagen, - and -casein, insulin b-chain, and a synthetic Mca-peptide. In contrast, isolated plasma fibronectin, type I collagen, and the DNP-peptide were no substrates. Both catalytically active recombinant pFN fragments were efficiently inhibited by EDTA, and batimastat, and, in contrast to the glycosylated enzyme isolated from plasma fibronectin, were also inhibited by TIMP-2.  相似文献   

8.
突破周围包裹的基底膜(BMs)向邻近或远隔部位侵袭和转移是恶性肿瘤的特征之一。因此,研究BMs主要成分——胶原蛋白IV(IV-C)的生物学特性对于预测及判断恶性肿瘤的侵袭和转移具有重要意义。IV-C不但构成BMs骨架,而且还能与细胞膜上的受体相互作用,参与细胞黏附、迁移、生长、增殖和分化等重要生理过程,与肿瘤等多种重大疾病密切相关。综述了IV-C的生物学特性研究进展。  相似文献   

9.
A novel series of 8-amino imidazo[1,2-a]pyrazine derivatives has been developed as inhibitors of the VirB11 ATPase HP0525, a key component of the bacterial type IV secretion system. A flexible synthetic route to both 2- and 3-aryl substituted regioisomers has been developed. The resulting series of imidazo[1,2-a]pyrazines has been used to probe the structure–activity relationships of these inhibitors, which show potential as antibacterial agents.  相似文献   

10.
Type IV pili are expressed from a wide variety of Gram‐negative bacteria and play a major role in host cell adhesion and bacterial motility. PilC is one of at least a dozen different proteins that are implicated in Type IV pilus assembly in Thermus thermophilus and a member of a conserved family of integral inner membrane proteins which are components of the Type II secretion system (GspF) and the archeal flagellum. PilC/GspF family members contain repeats of a conserved helix‐rich domain of around 100 residues in length. Here, we describe the crystal structure of one of these domains, derived from the N‐terminal domain of Thermus thermophilus PilC. The N‐domain forms a dimer, adopting a six helix bundle structure with an up‐down‐up‐down‐up‐down topology. The monomers are related by a rotation of 170°, followed by a translation along the axis of the final α‐helix of approximately one helical turn. This means that the regions of contact on helices 5 and 6 in each monomer are overlapping, but different. Contact between the two monomers is mediated by a network of hydrophobic residues which are highly conserved in PilC homologs from other Gram‐negative bacteria. Site‐directed mutagenesis of residues at the dimer interface resulted in a change in oligomeric state of PilC from tetramers to dimers, providing evidence that this interface is also found in the intact membrane protein and suggesting that it is important to its function. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
We have studied the evolution of a type IV secretion system (T4SS), in Bartonella, which is thought to have changed function from conjugation to erythrocyte adherence following a recent horizontal gene transfer event. The system, called Trw, is unique among T4SSs in that genes encoding both exo- and intracellular components are located within the same duplicated fragment. This provides an opportunity to study the influence of selection on proteins involved in host-pathogen interactions. We sequenced the trw locus from several strains of Bartonella henselae and investigated its evolutionary history by comparisons to other Bartonella species. Several instances of recombination and gene conversion events where detected in the 2- to 5-fold duplicated gene fragments encompassing trwJIH, explaining the homogenization of the anchoring protein TrwI and the divergence of the minor pilus protein TrwJ. A phylogenetic analysis of the 7- to 8-fold duplicated gene coding for the major pilus protein TrwL displayed 2 distinct clades, likely representing a subfunctionalization event. The analyses of the B. henselae strains also identified a recent horizontal transfer event of almost the complete trwL region. We suggest that the switch in function of the T4SS was mediated by the duplication of the genes encoding pilus components and their diversification by combinatorial sequence shuffling within and among genomes. We suggest that the pilus proteins have evolved by diversifying selection to match a divergent set of erythrocyte surface structures, consistent with the trench warfare coevolutionary model.  相似文献   

12.
Apart from the paradigm that cell–biomaterials interaction depends on the adsorption of soluble adhesive proteins we anticipate that upon distinct conditions also other, less soluble ECM proteins such as collagens, associate with the biomaterials interface with consequences for cellular response that might be of significant bioengineering interest. Using atomic force microscopy (AFM) we seek to follow the nanoscale behavior of adsorbed type IV collagen (Col IV)—a unique multifunctional matrix protein involved in the organization of basement membranes (BMs) including vascular ones. We have previously shown that substratum wettability significantly affects Col IV adsorption pattern, and in turn alters endothelial cells interaction. Here we introduce two new model surfaces based on self‐assembled monolayers (SAMs), a positively charged –NH2, and negatively charged –COOH surface, to learn more about their particular effect on Col IV behavior. AFM studies revealed distinct pattern of Col IV assembly onto the two SAMs resembling different aspects of network‐like structure or aggregates (suggesting altered protein conformation). Moreover, the amount of adsorbed FITC‐labeled Col IV was quantified and showed about twice more protein on NH2 substrata. Human umbilical vein endothelial cells attached less efficiently to Col IV adsorbed on negatively charged COOH surface judged by altered cell spreading, focal adhesions formation, and actin cytoskeleton development. Immunofluorescence studies also revealed better Col IV recognition by both α1 and α2 integrins on positively charged NH2 substrata resulting in higher phosphorylated focal adhesion kinase recruitment in the focal adhesion complexes. On COOH surface, no integrin clustering was observed. Taken altogether these results, point to the possibility that combined NH2 and Col IV functionalization may support endothelization of cardiovascular implants. Biotechnol. Bioeng. 2011;108: 3009–3018. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Type IV pili (Tfp) are arguably the most widespread pili in bacteria, whose biogenesis requires a complex machinery composed of as many as 18 different proteins. This includes the conserved outer membrane-localized secretin, which forms a pore through which Tfp emerge on the bacterial surface. Although, in most model species studied, secretin oligomerization and functionality requires the action of partner lipoproteins, structural information regarding these molecules is limited. We report the high-resolution crystal structure of PilW, the partner lipoprotein of the type IV pilus secretin PilQ from Neisseria meningitidis, which defines a conserved class of Tfp biogenesis proteins involved in the formation and/or stability of secretin multimers in a wide variety of bacteria. The use of the PilW structure as a blueprint reveals an area of high-level sequence conservation in homologous proteins from different pathogens that could reflect a possible secretin-binding site. These results could be exploited for the development of new broad-spectrum antibacterials interfering with the biogenesis of a widespread virulence factor.  相似文献   

14.
Pseudomonas aeruginosa bacteriophage φKMV requires type IV pili for infection, as observed from the phenotypic characterization and phage adsorption assays on a phage infection-resistant host strain mutant. A cosmid clone library of the host ( P. aeruginosa PAO1) genomic DNA was generated and used to select for a clone that was able to restore φKMV infection in the resistant mutant. This complementing cosmid also re-established type IV pili-dependent twitching motility. The correlation between bacteriophage φKMV infectivity and type IV pili, along with its associated twitching motility, was confirmed by the resistance of a P. aeruginosa PAO1Δ pilA mutant to the phage. Subcloning of the complementing cosmid and further phage infection analysis and motility assays suggests that a common regulatory mechanism and/or interaction between the ponA and pilMNOPQ gene products are essential for bacteriophage φKMV infectivity.  相似文献   

15.
Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N‐terminal Fic domain and a C‐terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS‐mediated translocation into host cells. A proteolysis resistant fragment (residues 10–302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α‐[32P]‐ATP. Its crystal structure, determined to 2.9‐Å resolution by the SeMet‐SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β‐rich domain at the C‐terminus. On crystal soaking with ATP/Mg2+, additional electron density indicated the presence of a PPi/Mg2+ moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg2+ and target tyrosine. The model is consistent with an in‐line nucleophilic attack of the deprotonated side‐chain hydroxyl group onto the α‐phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence‐independent mechanism of target positioning through antiparallel β‐strand interactions between enzyme and target is suggested.  相似文献   

16.
17.
The ABO histo-blood group antigens are best known for their important roles in solid organ and bone marrow transplantation as well as transfusion medicine. Here we report the synthesis of the ABO type III and IV antigens with a 7-octen-1-yl aglycone. Also described is an NMR study of the ABO type I to VI antigens, which were carried out to probe differences in overall conformation of the molecules. These NMR investigations showed very little difference in the 1H chemical shifts, as well as 1H–1H coupling constants, across all compounds, suggesting that these ABO subtypes adopt nearly identical conformations in solution.  相似文献   

18.
Using available commercial robotics and instrumentation, we developed a fully automated and rigorous steady state enzyme kinetic assay for dipeptidyl peptidase IV (DPP IV; E.C. 3.4.14.5). The automated assay was validated with isoleucyl thiazolidide, a potent inhibitor of DPP IV with K(is)=110nM. Signal window analysis indicated that the assay had a 98% probability of detecting an inhibitor yielding 15% inhibition, with a predicted false positive rate of 0.13%. A mechanistic inhibition version of the automated assay was validated with isoleucyl 4-cyanothiazolidide, a very potent inhibitor of DPP IV. Isoleucyl 4-cyanothiazolidide was a competitive inhibitor of purified porcine DPP IV with K(is)=1 nM. Similar K(is) values were obtained for purified rat DPP IV and for DPP IV activity in human plasma from normal and diabetic donors. The pH dependence of K(is) for isoleucyl 4-cyanothiazolidide yielded a bell-shaped profile, with pK(a)=5.0 and pK(b)=7.6. To date, over 100,000 data points have been generated in profiling targeted compound libraries and in the analysis of tight-binding inhibitors of DPP IV. The data also show that robotic analysis is capable of producing full mechanistic inhibition analysis in a timely fashion to support drug discovery.  相似文献   

19.
CRISPR‐Cas is RNA‐based prokaryotic immune systems that defend against exogenous genetic elements such as plasmids and viruses. Cas1 and Cas2 are highly conserved components that play an essential part in the adaptation stage of all CRISPR‐Cas systems. Characterization of CRISPR‐Cas genes in Thermococcus onnurineus reveals the association of the Cas2 gene with the putative type IV system that lacks Cas1 or its homologous genes. Here, we present a crystal structure of T. onnurineus Cas2 (Ton_Cas2) that exhibits a deep and wide cleft at an interface lined with positive residues (Arg16, Lys18, Lys19, Arg22, and Arg23). The obvious DNA recognizing loops in Cas2 from E. coli (Eco_Cas2) are absent in Ton_Cas2 and have significantly different shapes and electrostatic potential distributions around the putative nucleotide binding region. Furthermore, Ton_Cas2 lacks the hairpin motif at the C‐terminus that is responsible for Cas1 binding in Eco_Cas2. These structural features could be a unique signature and indicate an altered functional mechanism in the adaptation stage of Cas2 in type IV CRISPR‐Cas systems.  相似文献   

20.
Type IV collagen-degrading activity was expressed in homogenates of Lytechinus pictus embryos during embryogenesis. Activity was concentrated 1,600-fold by ammonium sulfate fractionation, ion exchange, and gel chromatography and could not be activated further upon trypsin or organomercurial treatment. This enzyme activity could also degrade gelatin but had no affinity for type I, III, and V collagens. Activity was inhibited by addition of excess type IV collagen or gelatin, but was unaffected by addition of excess amounts of non-collagenous proteins of the extracellular matrix. Chelators such as 1,10-phenanthroline or Na2EDTA reduced activity to control levels. Inhibitors of plasmin and of serine and thiol proteases were without effect. Type IV collagen-degrading activity first became apparent at the stage of early mesenchyme blastula. It then increased by a small increment and remained stable up to the stage of late mesenchyme blastula, coinciding with first detection of collagen synthesis and the appearance of the archenteron. Thereafter, a sharp increase in activity was observed, concurrently with remodelling of the archenteron. Maximum activity was attained at prism stage and was retained throughout to pluteus-larva stage. The specific inhibitors of collagen biosynthesis 8,9-dihydroxy-7-methyl-benzo[b]quinolizinium bromide and tricyclodecane-9-yl xanthate arrested sea urchin embryo development at early blastula, prevented the invagination of the archenteron, and reverted the expression of type IV collagen-degrading activity to non-detectable levels. Removal of the inhibitors allowed embryos to gastrulate and express type IV collagen-degrading activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号