首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invasin is an outer membrane protein that is known to mediate entry of enteric bacteria into mammalian cells. In this study, we analyzed the function and immunoprotective potential of the invasin Inv1 from Edwardsiella tarda, a serious fish pathogen that can also infect humans. In silico analysis indicated that Inv1 possesses a conserved N-terminal DUF3442 domain and a C-terminal group 1 bacterial Ig-like domain. Subcellular localization analysis showed that Inv1 is exposed on cell surface and could be recognized by specific antibodies. Mutation of inv1 had no effect on bacterial growth but attenuates overall bacterial virulence and impaired the ability of E. tarda to attach and invade into host cells. Consistent with these observations, antibody blocking of Inv1 inhibited E. tarda infection of host cells. To examine the immunoprotective potential of Inv1, recombinant Inv1 (rInv1) corresponding to the DUF3442 domain was purified and used to vaccinate Japanese flounder (Paralichthys olivaceus). The results showed that rInv1 induced strong protection against lethal-dose challenge of E. tarda. ELISA analysis showed that rInv1-vaccinated fish produced specific serum antibodies that could enhance the serum bactericidal activity against E. tarda. Taken together, these results indicate that Inv1 is a surface-localized virulence factor that is involved in host infection and can induce effective immunoprotection when used as a subunit vaccine.  相似文献   

2.
Aims: To differentiate pathogenic and nonpathogenic Edwardsiella tarda strains based on the detection of type III secretion system (T3SS) gene using polymerase chain reaction (PCR). Methods and Results: Primers were designed to amplify Edw. tarda T3SS component gene esaV, catalase gene katB, haemolysin gene hlyA and 16S rRNA gene as an internal positive control. Genomic DNAs were extracted using a commercial isolation kit from 36 Edw. tarda strains consisting of 18 pathogenic and 18 nonpathogenic strains, and 50 ng of each DNA was used as the template for PCR amplification. PCR was performed with a thermocycler (TaKaRa TP600) in a 25‐μl volume. Products of esaV were detected in all pathogenic strains, but not in nonpathogenic strains; katB was detected in all pathogenic strains and one of nonpathogenic strains; hlyA was not detected in any strains. Conclusions: The detection of esaV gene can be used for the assessment of pathogenic Edw. tarda strains. Significance and Impact of the Study: The strategy using T3SS gene as the virulence indicator provides a useful tool for the clinical assessment of pathogenic Edw. tarda strains and prediction of edwardsiellosis risk in fish culture environments.  相似文献   

3.
Edwardsiella tarda and Streptococcus iniae are important aquaculture pathogens that affect many species of farmed fish. In this study, we analyzed the expression, activity, and immunoprotective potential of E. tarda heat shock protein DnaK. We found that dnaK expression was upregulated under conditions of heat shock, oxidative stress, and infection of host cells. Recombinant DnaK (rDnaK) purified from Escherichia coli exhibited ATPase activity and induced protection in Japanese flounder (Paralichthys olivaceus) against lethal E. tarda challenge. On the basis of these results and our previous observation that a protective S. iniae antigen Sia10 which, when expressed heterogeneously in E. coli DH5α, is secreted into the extracellular milieu, we constructed a chimeric antigen by fusing DnaK to Sia10. The resulting fusion protein Sia10-DnaK was expressed in DH5α via the plasmid pTDK. Western blot analysis indicated that Sia10-DnaK was detected in the culture supernatant of DH5α/pTDK. When flounder were vaccinated with live DH5α/pTDK, strong protection was observed against both E. tarda and S. iniae. ELISA analysis detected specific serum antibody production in fish vaccinated with rDnaK and DH5α/pTDK. Taken together, these results indicate that rDnaK is an intrinsic ATPase with immunoprotective property and that Sia10-DnaK delivered by a live bacterial host is an effective bivalent vaccine candidate against E. tarda and S. iniae infection.  相似文献   

4.
The twin-arginine translocation (Tat) system is a major pathway for transmembrane translocation of fully folded proteins. In this study, a multivalent vaccine to present foreign antigens on live attenuated vaccine Edwardsiella tarda WED using screened Tat signal peptide was constructed. Because the Tat system increases the yields of folded antigens in periplasmic space or extracellular milieu, it is expected to contribute to the production of conformational epitope-derived specific antibodies. E. tarda Tat signal peptides fused with the green fluorescent protein (GFP) was constructed under the control of an in vivo inducible dps promoter. The resulting plasmids were electroporated into WED and the subcellular localizations of GFP were analyzed with Western blotting. Eight signal peptides with optimized GFP translocation efficiency were further fused to a protective antigen glyceraldehyde-3-phosphate dehydrogenase (GapA) from a fish pathogen Aeromonas hydrophila. Signal peptides of DmsA, NapA, and SufI displayed high efficiency for GapA translocation. The relative percent survival (RPS) of turbot was measured with a co-infection of E. tarda and A. hydrophila, and the strain with DmsA signal peptide showed the maximal protection. This study demonstrated a new platform to construct multivalent vaccines using optimized Tat signal peptide in E. tarda.  相似文献   

5.

Background

Edwardsiella tarda is the etiologic agent of edwardsiellosis, a devastating fish disease prevailing in worldwide aquaculture industries. Here we describe the complete genome of E. tarda, EIB202, a highly virulent and multi-drug resistant isolate in China.

Methodology/Principal Findings

E. tarda EIB202 possesses a single chromosome of 3,760,463 base pairs containing 3,486 predicted protein coding sequences, 8 ribosomal rRNA operons, and 95 tRNA genes, and a 43,703 bp conjugative plasmid harboring multi-drug resistant determinants and encoding type IV A secretion system components. We identified a full spectrum of genetic properties related to its genome plasticity such as repeated sequences, insertion sequences, phage-like proteins, integrases, recombinases and genomic islands. In addition, analysis also indicated that a substantial proportion of the E. tarda genome might be devoted to the growth and survival under diverse conditions including intracellular niches, with a large number of aerobic or anaerobic respiration-associated proteins, signal transduction proteins as well as proteins involved in various stress adaptations. A pool of genes for secretion systems, pili formation, nonfimbrial adhesions, invasions and hemagglutinins, chondroitinases, hemolysins, iron scavenging systems as well as the incomplete flagellar biogenesis might feature its surface structures and pathogenesis in a fish body.

Conclusion/Significance

Genomic analysis of the bacterium offered insights into the phylogeny, metabolism, drug-resistance, stress adaptation, and virulence characteristics of this versatile pathogen, which constitutes an important first step in understanding the pathogenesis of E. tarda to facilitate construction of a practical effective vaccine used for combating fish edwardsiellosis.  相似文献   

6.
The type III secretion system (T3SS) of Edwardsiella tarda plays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation of E. tarda. In this study, we demonstrate that EseB forms filamentous appendages on the surface of E. tarda and is required for biofilm formation by E. tarda in Dulbecco''s modified Eagle''s medium (DMEM). Biofilm formation by E. tarda in DMEM does not require FlhB, an essential component for assembling flagella. Dynamic analysis of EseB filament formation, autoaggregation, and biofilm formation shows that the formation of EseB filaments occurs prior to autoaggregation and biofilm formation. The addition of an EseB antibody to E. tarda cultures before bacterial autoaggregation prevents autoaggregation and biofilm formation in a dose-dependent manner, whereas the addition of the EseB antibody to E. tarda cultures in which biofilm is already formed does not destroy the biofilm. Therefore, EseB filament-mediated bacterial cell-cell interaction is a prerequisite for autoaggregation and biofilm formation.  相似文献   

7.
Erwinia piriflorinigrans is a necrotrophic pathogen of pear reported from Spain that destroys flowers but does not progress further into the host. We sequenced the complete genome of the type strain CFBP 5888T clarifying its phylogenetic position within the genus Erwinia, and indicating a position between its closest relative, the epiphyte Erwinia tasmaniensis and other plant pathogenic Erwinia spp. (i.e., the fire blight pathogen E. amylovora and the Asian pear pathogen E. pyrifoliae). Common features are the type III and type VI secretion systems, amylovoran biosynthesis and desferrioxamine production. The E. piriflorinigrans genome also provided the first evidence for production of the siderophore chrysobactin within the genus Erwinia sensu stricto, which up to now was mostly associated with phytopathogenic, soft-rot Dickeya and Pectobacterium species. Plasmid pEPIR37, reported in this strain, is closely related to small plasmids found in the fire blight pathogen E. amylovora and E. pyrifoliae. The genome of E. piriflorinigrans also gives detailed insights in evolutionary genomics of pathoadapted Erwinia.  相似文献   

8.
Edwardsiella tarda causes an infectious fish disease called edwardsiellosis. Several outer membrane proteins (OMPs) are associated with virulence factors and are attractive as vaccine candidates. In this study, 4 immuno-reactive OMPs of E. tarda were detected using anti-sera from flounder infected with E. tarda. Using matrix-assisted laser desorption/ionization mass spectrometry analyses, 2 of the 4 OMPs were identified as OmpA and murein lipoprotein (Lpp), which are highly conserved surface proteins in gram-negative bacteria. For further characterization of these surface proteins, we generated ompA- and lpp-inactivated mutants by insertion of a kanamycin cassette in the corresponding genes, and named these mutants E. tarda CK99 and CK164, respectively. As expected, immuno-reactive OmpA and Lpp proteins were absent in E. tarda CK99 and CK164, respectively, confirming that OmpA and Lpp are antigenic surface proteins. Interestingly, the LD50 value of E. tarda CK164 in fish (2.0 × 108 colony-forming unit [CFU]/fish) was greater than that of the parental strain (3.0 × 107 CFU/fish). The LD50 of E. tarda CK99 did not differ from that of its parental strain. After administering attenuated E. tarda CK164 to fish, we monitored the E. tarda-specific immune response profile. We observed that the E. tarda-specific serum IgM titer increased in a time-dependent manner, and was much higher than the value observed after the administration of a heat-killed E. tarda control. Moreover, fish vaccinated with E. tarda CK164 were 100% protected when challenged by CK41, a pathogenic strain. Our results suggest that E. tarda CK164 can potentially be used for developing an effective live attenuated vaccine for edwardsiellosis that can be applied in the aquaculture industry.  相似文献   

9.
Edwardsiella tarda is an enteric Gram-negative invasive intracellular pathogen, which causes enteric septicemia in fish. It could be potentially used to develop a recombinant attenuated E. tarda vaccine for the aquaculture industry. Because live vaccine strains can potentially be released into the environment upon vaccination, medical and environmental safety issues must be considered. Deletion of the asdB gene in E. tarda resulted in a diaminopimelic acid (DAP)-dependent mutant. The wild type asdB gene was inserted in place of the antibiotic-resistance gene in the plasmid, and the resultant non-antibiotic resistant vector was transformed into the attenuated and DAP-dependent E. tarda vaccine strain (WEDΔasdB) to obtain a balanced-lethal system for heterologous antigen expression. The balanced-lethal expression system was further optimized by comparing plasmid replicons with different Shine–Dalgarno sequences and start codons for the asdB gene. Utilizing the optimized balanced-lethal expression system, the protective antigen gene gapA34 from the fish pathogen Aeromonas hydrophila LSA34 was expressed in the attenuated E. tarda to generate the multivalent vaccine candidate WEDΔasdB/pUTta4DGap. This vaccine was shown to evoke an effective immune response against both E. tarda and A. hydrophila LSA34 by vaccinating turbot via a simple immersion route. This multivalent E. tarda vector vaccine has great potential for broad applications in aquaculture.  相似文献   

10.
Edwardsiella tarda is an intracellular pathogen that causes edwardsiellosis in fish. Our previous study suggests that cell-mediated immunity (CMI) plays an essential role in protection against E. tarda infection. In the present study, we adoptively transferred T-cell subsets sensitized with E. tarda to isogenic naïve ginbuna crucian carp to determination the T-cell subsets involved in protecting fish from E. tarda infection. Recipients of CD4+ and CD8α+ cells acquired significant resistance to infection with E. tarda 8 days after sensitization, indicating that helper T cells and cytotoxic T lymphocytes plays crucial roles in protective immunity to E. tarda. Moreover, transfer of sensitized CD8α+ cells up-regulated the expression of genes encoding interferon-γ (IFN-γ) and perforin, suggesting that protective immunity to E. tarda involves cell-mediated cytotoxicity and interferon-γ-mediated induction of CMI. The results establish that CMI plays a crucial role in immunity against E. tarda. These findings provide novel insights into understanding the role of CMI to intracellular pathogens of fish.  相似文献   

11.
In this study, rpoS gene was identified from Edwardsiella tarda EIB202 and its functional role was analyzed by using an in-frame deletion mutant ∆rpoS and the complemental strain rpoS +. Compared with the wild type and rpoS +, ∆rpoS was impaired in terms of the ability to survive under oxidative stress and nutrient starvation, as well as the resistance to 50% serum of Scophthalmus maximus in 3 h, demonstrating essential roles of RpoS in stress adaptation. The rpoS mutant also displayed markedly increased chondroitinase activity and biofilm formation. Real-time polymerase chain reaction revealed that the expression level of quorum sensing autoinducer synthetase genes luxS and edwI was increased by 3.7- and 2.5-fold in the rpoS mutant strain. Those results suggested that rpoS might be involved in the negative or positive regulation of chondroitinase and biofilm formation, or quorum sensing networks in E. tarda, respectively. Although there were no obvious differences between the wild-type and the rpoS mutant in adherence of epithelioma papulosum cyprini (EPC) cell and in the lethality on fish model, rpoS deletion leads to the drastically reduced capacity for E. tarda to internalize in EPC cells, indicating that RpoS was, while not the main, the factor required for the virulence network of E. tarda.  相似文献   

12.
Bacterial twin-arginine translocation (Tat) system contributes to translocate folded proteins to the periplasm and plays pleiotropic roles in physiological fitness. Here, we showed that the fish pathogen Edwardsiella tarda Tat pathway was functional and was essential for H2S production and hemolytic activity. E. tarda Tat mutant was more susceptible to diverse stresses such as high temperature, SDS, ethanol, and high-salt conditions. However, E. tarda Tat mutant displayed marginal in vivo virulence attenuation in fish models. Comparative proteomics analysis using two-dimensional gel electrophoresis (2-DGE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry were performed to identify proteins undergoing changes in expression levels under high-salt conditons when the Tat pathway was mutilated. Of the 96 differently expressed proteins on the 2-DGE map, 15 proteins were successfully identified with a MASCOT score >45 (p?<?0.05) and fold change higher than 2. These significantly differentially expressed proteins were functionally related to basal metabolism and the biosynthesis of proteins and macromolecules. The results of plate counting further confirmed that the Tat mutant was high-salt-sensitive, indicating that Tat mutant merits as a novel salt-sensitive biological containment system for live attenuated vaccine (LAV) in marine fish vaccinology. To test this, we deleted the type III secretion system genes and cured endogenous plasmid pEIB202 to construct a LAV candidate in the context of Tat abrogation in E. tarda. The results indicated that the LAV candidate was highly attenuated when injected intraperitoneally and elicited significant protection against challenge of wild-type E. tarda in turbot while being rapidly eliminated in seawater.  相似文献   

13.
14.
Until 2012, the genus Edwardsiella was composed by three species Edwardsiella tarda, Edwardsiella hoshinae and Edwardsiella ictaluri. In 2013, Edwardsiella piscicida, compiling fish pathogenic strains previously identified as E. tarda was described, and more recently a new species isolated from diseased eel was reported, namely Edwardsiella anguillarum.The incorporation of these species into the genus makes necessary a revision of the taxonomic position of the isolates previously identified as E. tarda. Using AFLP technique, MLSA studies and in silico DNA–DNA hybridization, 46 of 49 E. tarda isolates were re-assigned as E. piscicida and 2 as E. anguillarum, whereas it was confirmed previous classification of the Edwardsiella types and reference strains used. The study of the taxonomic resolution of the genes 16S rRNA, adk, atpD, dnaJ, glnA, hsp60, tuf as well as the possible combinations among housekeeping genes, showed that the gene dnaJ was the more resolutive. In conclusion, the use of molecular techniques is necessary to accurately identify Edwardsiella isolates, especially when differentiating new species from E. tarda.  相似文献   

15.
Edwardsiella tarda is pathogen of fish and other animals. The aim of this study was to investigate the viable but nonculturable (VBNC) state and virulence retention of this bacterium. Edwardsiella tarda CW7 was cultured in sterilized aged seawater at 4°C. Total cell counts remained constant throughout the 28-day period by acridine orange direct counting, while plate counts declined to undetectable levels (<0.1 CFU/ml) within 28 days by plate counting. The direct viable counts, on the other hand, declined to ca. 109 CFU/ml active cells and remained fairly constant at this level by direct viable counting. These results indicated that a large population of cells existed in a viable but nonculturable state. VBNC E. tarda CW7 could resuscitate in experimental chick embryos and in the presence of nutrition with a temperature upshift. The resuscitative times were 6 days and 8 days, respectively. The morphological changes of VBNC, normal, and resuscitative E. tarda CW7 cells were studied with a scanning electron microscope. The results showed that when the cells entered into the VBNC state, they gradually changed in shape from short rods to coccoid and decreased in size, but the resuscitative cells did not show any obvious differences from the normal cells. The VBNC and the resuscitative E. tarda CW7 cells were intraperitoneally inoculated into turbot separately, and the fish inoculated with the resuscitative cells died within 7 days, which suggested that VBNC E. tarda CW7 might retain pathogenicity.  相似文献   

16.
Edwardsiella tarda is one of the leading fish pathogens for the aquaculture industry. To realize efficient disease control of edwardsiellosis, a predictive model for E. tarda in seawater was developed. The modified logistic model was used to regress the growth curves of E. tarda JN at five different temperatures (range from 10 to 30 °C) and four organic nutrient concentrations (range from 5 to 40 mg l?1 measured by chemical oxygen demand (COD)). The modeling effects of temperature and COD on the specific growth rate (μ) were developed by square-root model and saturation-growth rate model, respectively. The growth model was validated in turbot aquaculture tanks by estimating the dynamics of inoculated E. tarda. The accurate feeding of probiotic Bacillus pumilus strain H2 was calculated based on the estimation of E. tarda. Results showed that the logistic model produced a good fit to the growth curves of E. tarda JN (average R2?=?0.962). The overall predictions based on above models agreed well with the growth curve of E. tarda JN observed by plate counting in the validation tests (average Af?=?1.16; average Bf?=?1.32). The use of predicted amount of B. pumilus (5.66 log CFU ml?1) successfully prevent the deterioration of disease for turbot with 13.3% mortality rate in a recirculating aquaculture system (RAS), while the feeding of 0 and 3.0 log CFU ml?1 of B. pumilus resulted in 53.7 and 75.3% of turbot mortality rate, respectively. In conclusion, accurate estimation of E. tarda realized the precise feeding of probiotics, which successfully prevent the rapid progression of the edwardsiellosis.  相似文献   

17.
18.
19.
20.
Edwardsiella tarda has a type III secretion system (T3SS) essential for pathogenesis. EseD, together with EseB and EseC, has been suggested to form a putative T3SS translocon complex, although its further function is unclear. To investigate the physiological role of EseD, a mutant strain of E. tarda was constructed with an in-frame deletion of the entire eseD gene. One finding was that the ?eseD mutant decreased the secretion levels of EseC and EseB proteins. Additionally, the ?eseD mutant showed attenuated swarming and contact-hemolysis abilities. However, the ?eseD mutant showed increased biofilm formation. Complementation of the mutant strain with eseD restored these phenotypes to those similar to the wild-type strain. Furthermore, infection experiments in fish showed that the ?eseD mutant exhibited slower proliferation and a tenfold decrease in virulence in fish. These results indicate a specific role of EseD in the pathogenesis of E. tarda. Finally, recombinant EseD protein elicited high antibody titers in immunized fish and various levels of protection against lethal challenge with the wild-type strain. These results indicate that EseD protein may be a candidate antigen for development of a subunit vaccine against Edwardsiellosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号