首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
The activities of two enzymes mediating different pathways of ornithine catabolism were measured in liver and kidney of chronically uremic rats and their pair-fed controls. Two months following partial nephrectomy hepatic ornithine aminotransferase (OAT) activity tended to be lower in uremic rats and was correlated with urea clearance and with carbamoyl phosphate synthetase activity. Renal OAT activity in uremic rats was also correlated with urea clearance. When uremic rats were maintained for five months, OAT activity was significantly decreased in liver but not in kidney and the activity of ornithine decarboxylase (ODC), the enzyme regulating polyamine biosynthesis, was reduced in both liver and kidney. In cross-over experiments, evidence was obtained for a factor in uremic kidney cytosol which inhibited renal ODC activity.  相似文献   

3.
Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O-UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate-limiting enzyme of the O-UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O-UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O-UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.  相似文献   

4.
5.
Urea synthesis via the hepatic ornithine urea cycle (OUC) has been well described in elasmobranchs, but it is unknown whether OUC enzymes are also present in extrahepatic tissues. Muscle and liver urea, trimethylamine oxide (TMAO), and other organic osmolytes, as well as selected OUC enzymes (carbamoyl phosphate synthetase III, ornithine transcarbamoylase, arginase, and the accessory enzyme glutamine synthetase), were measured in adult little skates (Raja erinacea) exposed to 100% or 75% seawater for 5 d. Activities of all four OUC enzymes were detected in the muscle. There were no changes in muscle OUC activities in skates exposed to 75% seawater; however, arginase activity was significantly lower in the liver, compared to controls. Urea, TMAO, and several other osmolytes were significantly lower in the muscle of little skates exposed to 75% seawater, whereas only glycerophosphorylcholine was significantly lower in the liver. Urea excretion rates were twofold higher in skates exposed to 75% seawater. Taken together, these data suggest that a functional OUC may be present in the skeletal muscle tissues of R. erinacea. As well, enhanced urea excretion rates and the downregulation of the anchor OUC enzyme, arginase, in the liver may be critical in regulating tissue urea content under dilute-seawater stress.  相似文献   

6.
Arginase I (AI), the fifth and final enzyme of the urea cycle, detoxifies ammonia as part of the urea cycle. In previous studies from others, AI was not found in extrahepatic tissues except in primate blood cells, and its roles outside the urea cycle have not been well recognized. In this study we undertook an extensive analysis of arginase expression in postnatal mouse tissues by in situ hybridization (ISH) and RT-PCR. We also compared arginase expression patterns with those of ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT). We found that, outside of liver, AI was expressed in many tissues and cells such as the salivary gland, esophagus, stomach, pancreas, thymus, leukocytes, skin, preputial gland, uterus and sympathetic ganglia. The expression was much wider than that of arginase II, which was highly expressed only in the intestine and kidney. Several co-localization patterns of AI, ODC, and OAT have been found: (a) AI was co-localized with ODC alone in some tissues; (b) AI was co-localized with both OAT and ODC in a few tissues; (c) AI was not co-localized with OAT alone in any of the tissues examined; and (d) AI was not co-localized with either ODC or OAT in some tissues. In contrast, AII was not co-localized with either ODC or OAT alone in any of the tissues studied, and co-localization of AII with ODC and OAT was found only in the small intestine. The co-localization patterns of arginase, ODC, and OAT suggested that AI plays different roles in different tissues. The main roles of AI are regulation of arginine concentration by degrading arginine and production of ornithine for polyamine biosynthesis, but AI may not be the principal enzyme for regulating glutamate biosynthesis in tissues and cells.  相似文献   

7.
Teleost fish store lipids among several tissues primarily as triacylglycerol (TG). Upon metabolic demand, stored TGs are hydrolyzed by hormone-sensitive lipase (HSL). In this study, two distinct cDNAs encoding HSL were isolated, cloned, and sequenced from adipose tissue of rainbow trout. The full-length cDNAs, designated HSL1 and HSL2, were 2562-bp and 2887-bp in length, respectively, and share 82% nucleotide identity. Phylogentic analysis suggests that the two HSLs derive from paralogous genes that may have arisen during a teleost-specific genome duplication event. Quantitative real-time PCR revealed that HSL1 and HSL2 were differentially expressed, both in terms of distribution among tissues as well as in terms of abundance within selected tissues of juvenile trout. HSL1 and HSL2 mRNAs were detected in the brain, spleen, pancreas, kidney, gill, intestine, heart, and white muscle, but were most abundant in the red muscle, liver, and adipose tissue. HSL1 mRNA was more abundant than HSL2 mRNA in the adipose tissue, whereas HSL2 mRNA was more abundant than HSL1 mRNA in the liver. Short term fasting (4 weeks) increased HSL1 and HSL2 mRNA expression in the adipose tissue, but only HSL1 mRNA levels increased in the liver and the red muscle. During a prolonged fast (6 weeks), there was continued elevation of HSL1 and HSL2 mRNA levels in the liver and muscle; HSL mRNA expression in mesenteric fat declined, coincident with depletion of mesenteric fat mass. Refeeding fish reduced HSL expression to levels seen in continuously fed fish. These findings indicate that the pattern of HSL expression is consistent with the diverse lipid storage pattern of fish and suggest that distinct mechanisms serve to regulate differential expression of the two HSLs in tissues and during a progressive fast.  相似文献   

8.
9.
Argininosuccinate synthetase and argininosuccinate lyase catalyze the synthesis of arginine from citrulline in kidney and also serve as components of the urea cycle in liver of ureotelic animals. Dietary and hormonal regulation of mRNAs encoding these enzymes have been well studied in liver but not in kidney. Messenger RNAs for these enzymes are localized within the renal cortex. Starvation and extreme variations in dietary protein content (0% vs 60% casein) produced 2.6- to 3.5-fold increases in mRNA abundance for these two enzymes in rat kidney. Argininosuccinate lyase mRNA was not induced by dibutyryl cAMP, dexamethasone, or a combination of the two agents. In contrast, argininosuccinate synthetase mRNA was induced 2-fold by dibutyryl cAMP but was unresponsive to dexamethasone. Thus, diet and hormones regulate levels of these mRNAs in rat kidney, but the responses are both qualitatively and quantitatively distinct from the responses previously reported for rat liver.  相似文献   

10.
Arginine is an intermediate of the urea cycle in the liver. It is synthesized by the first four enzymes of the cycle, carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase, and argininosuccinate lyase, and is hydrolyzed to urea and ornithine by arginase I, forming the cycle. In endotoxemia shock, inducible nitric oxide (NO) synthase (iNOS) is induced in hepatocytes and arginine is utilized for NO production. Regulation of the genes for iNOS and the urea cycle enzymes was studied using lipopolysaccharide (LPS)-treated rat livers. When rats were injected intraperitoneally with LPS, iNOS mRNA was markedly induced. Cationic amino acid transporter-2 and C/EBPbeta mRNAs were also highly increased. In contrast, mRNAs for all the urea cycle enzymes except ornithine transcarbamylase were gradually decreased and reached 16-28% of controls at 12 h. However, all these enzymes remained unchanged at protein level up to 24 h. In light of these results, we suggest that synthesis of urea cycle enzymes is downregulated and that the protein synthetic capacity is directed to synthesis of proteins required for defense against endotoxemia.  相似文献   

11.
The relative abundances of mRNAs encoding the five urea cycle enzymes during development of mouse liver have been determined and compared with those of mRNAs encoding four other liver-specific proteins (phosphoenolpyruvate carboxykinase, tyrosine aminotransferase, alpha-fetoprotein, and albumin). Urea cycle enzyme mRNAs in fetal liver are expressed at 2-14% of the abundance in adult liver as early as 6 days before birth. Expression of the urea cycle enzyme mRNAs is not coordinate during the fetal and neonatal period. However, profiles of three urea cycle enzyme mRNAs are quite similar to that of alpha-fetoprotein mRNA, suggesting the possibility of a common response to regulatory signals during fetal development. With the exception of ornithine transcarbamylase mRNA, the urea cycle enzyme mRNAs have been shown previously to be inducible by cAMP and glucocorticoids. However, only argininosuccinate lyase mRNA exhibits any significant change in abundance at birth, resembling postnatal expression of tyrosine aminotransferase mRNA. The results indicate that the urea cycle enzyme mRNAs are potentially useful markers for elucidating various features of hepatocyte differentiation in mammals.  相似文献   

12.
Metabolic changes, principally in intermediary metabolism and nitrogen excretion, were investigated in the marble swamp eel (Synbranchus marmoratus) after 15 and 45 days of artificially induced semi-aestivation. Glucose, glycogen, lactate, pyruvate, free amino acids, triglycerides, ammonia, urea, and urate contents were determined in liver, kidney, white muscle, heart, brain, and plasma. Lactate dehydrogenase, glutamate dehydrogenase, malate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthase, ornithine carbamoyl transferase, and arginase enzymes were assayed. The teleost S. marmoratus maintained initial energetic demands by lipid oxidation. The course of normal oxidative processes was observed through tissue enzyme profiles. After the lipid stores were exhausted, the fish consumed body proteins. Constant values of hematocrit during induced semi-aestivation suggested that the water balance remained normal. Therefore, the surrounding water was probably did not trigger the semi-aestivation in this teleost. Decrease of ammonia and increase of renal urea synthesis after 45 days of semi-aestivation led to the assumption that an alternative form of eliminating ammonia exists. Metabolic changes entailed by starvation were proposed to explain the biosynthesis of small molecules involved in the semi-aestivation of S. marmoratus.  相似文献   

13.
Exposure of fish to alkaline conditions inhibits the rate of ammonia excretion, leading to ammonia accumulation and toxicity. The purpose of this study was to determine the role of ureogenesis via the urea cycle, to avoid the accumulation of ammonia to a toxic level during chronic exposure to alkaline conditions, for the air-breathing walking catfish, Clarias batrachus, where a full complement of urea cycle enzyme activity has been documented. The walking catfish can survive in water with a pH up to 10. At a pH of 10 the ammonia excretion rate by the walking catfish decreased by approximately 75% within 6 h. Although there was a gradual improvement of ammonia excretion rate by the alkaline-exposed fish, the rate remained 50% lower, even after 7 days. This decrease of ammonia excretion was accompanied by a significant accumulation of ammonia in plasma and body tissues (except in the brain). Urea-N excretion for alkaline-exposed fish increased 2.5-fold within the first day, which was maintained until day 3 and was then followed by a slight decrease to maintain a 2-fold increase in the urea-N excretion rate, even after 7 days. There was also a higher accumulation of urea in plasma and other body tissues (liver, kidney, muscle and brain). The activity of glutamine synthetase and three enzymes operating in the urea cycle (carbamyl phosphate synthetase, argininosuccinate synthetase, argininosuccinate lyase) increased significantly in hepatic and extra-hepatic tissue, such as the kidney and muscle in C. batrachus, during exposure to alkaline water. A significant increase in plasma lactate concentration noticed during alkaline exposure possibly helped in the maintenance of the acid-base balance. It is apparent that the stimulation of ureogenesis via the induced urea cycle is one of the major physiological strategies adopted by the walking catfish (C. batrachus) during chronic exposure to alkaline water, to avoid the in vivo accumulation of ammonia to a toxic level in body tissues and for the maintenance of pH homeostasis.  相似文献   

14.
海水鱼类共附生细菌群落研究进展   总被引:3,自引:2,他引:1  
冯敬宾  胡超群 《生态学报》2010,30(10):2722-2734
与海水鱼类处于共生、共栖、寄生或附生关系的细菌群落,称之为海水鱼类共附生细菌群落。这类细菌群落生活在海水鱼体表(皮肤、鳃)以及体内(消化道和血液、肌肉、肝脏、肾脏等内部组织器官),它们彼此之间以及与宿主之间存在着极其密切的关系,并且对于宿主的健康生长具有重要作用。然而,由于目前对养殖系统中的微生物群落中的致病微生物缺乏有效控制措施,处于迅速发展中的养殖产业经受着相当严重的疾病问题。因而,生态健康养殖被提到议事日程上来,并且日益受到重视,其中微生物生态调控是极其重要的一个环节。由于目前相关的基础微生物生态学资料比较缺乏,尤其是在国内作为微生物生态的基本组成部分,与微生物病害发生有着直接关系的大多数海水养殖鱼类的共附生细菌群落研究资料相当缺乏。因此,很有必要开展海水养殖鱼类共附生细菌群落相关研究。在此背景下,从研究的目的和意义以及国内外研究现状包括宿主海水鱼类种类、共附生细菌群落类别、共附生细菌群落的影响因素、共附生细菌群落对宿主的作用等方面综述了海水鱼类共附生细菌群落的研究进展,并对此类研究趋势进行了展望,为开展相关研究提供一定的参考。  相似文献   

15.
The Toll-like receptor 7 (TLR7) is activated by single strand RNA and RNA-like compounds (imidazoquinoline), and it induces interferon production. We identified and described carp TLR7 cDNA and its mRNA expression. The full-length cDNA of carp TLR7 gene is 3427 bp, encoding 1049 amino acids (AB553573). The similarities of carp TLR7 with zebrafish, rainbow trout, fugu, and human TLR7 were 89.6, 83.4, 80.6 and 74.6%, respectively, at the amino acid sequence level. Furthermore, the expression of TLR7 mRNA was investigated in normal tissues of carp by semi-quantitative RT-PCR analysis. Carp TLR7 expression was exhibited in healthy tissues (kidney, brain, spleen, skin, intestine, muscle, liver, gills and heart) and though the expression level in each tissue varied among healthy fish. Carp TLR7 expression was significantly increased in head kidney stimulated with TLR7 agonist, imiquimod, at 8, 24 and 48 h in vitro when compared to expression in the control group. Moreover, carp head kidney leukocytes produced elevated levels of pro-inflammatory and type 1 interferon cytokine mRNA in response to imiquimod stimulation.  相似文献   

16.
17.
Ornithine decarboxylase activity in insulin-deficient states   总被引:1,自引:1,他引:0       下载免费PDF全文
The activity of ornithine decarboxylase, the rate-controlling enzyme in polyamine biosynthesis, was determined in tissues of normal control rats and rats made diabetic with streptozotocin. In untreated diabetic rats fed ad libitum, ornithine decarboxylase activity was markedly diminished in liver, skeletal muscle, heart and thymus. Ornithine decarboxylase was not diminished in a comparable group of diabetic rats maintained on insulin. Starvation for 48h decreased ornithine decarboxylase activity to very low values in tissues of both normal and diabetic rats. In the normal group, refeeding caused a biphasic increase in liver ornithine decarboxylase; there was a 20-fold increase in activity at 3h followed by a decrease in activity, and a second peak between 9 and 24h. Increases in ornithine decarboxylase in skeletal muscle, heart and thymus were not evident until after 24–48h of refeeding, and only a single increase occurred. The increase in liver ornithine decarboxylase in diabetic rats was greater than in normal rats after 3h of refeeding, but there was no second peak. In peripheral tissues, the increase in ornithine decarboxylase with refeeding was diminished. Skeletal-muscle ornithine decarboxylase is induced more rapidly when meal-fed rats are refed after a period without food. Refeeding these rats after a 48h period without food caused a 5-fold increase in ornithine decarboxylase in skeletal muscle at 3h in control rats but failed to increase activity in diabetic rats. When insulin was administered alone or together with food to the diabetic rats, muscle ornithine decarboxylase increased to activities even higher than in the refed controls. In conclusion, these findings indicate that the regulation of ornithine decarboxylase in many tissues is grossly impaired in diabetes and starvation. They also suggest that polyamine formation in vivo is an integral component of the growth-promoting effect of insulin or some factor dependent on insulin.  相似文献   

18.
The peroxisomal enzyme urate oxidase plays a pivotal role in the degradation of purines in both prokaryotes and eukaryotes. However, knowledge about the purine-induced expression of the encoding gene is lacking in vertebrates. These are the first published sequences of fish urate oxidase, which were predicted from PCR amplified liver cDNAs of Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), Atlantic halibut (Hippoglossus hippoglossus) and African lungfish (Protopterus annectens). Sequence alignment of different vertebrate urate oxidases revealed amino acid substitutions of putative functional importance in the enzyme of chicken and lungfish. In the adult salmon, expression of urate oxidase mRNA predominated in liver, but was also identified in several nonhepatic organs including brain, but not in skeletal muscle and kidney. Juvenile salmon fed diets containing bacterial protein meal (BPM) rich in nucleic acids showed a significant increase in liver urate oxidase enzyme activity, and urea concentrations in plasma, muscle and liver were elevated. Whereas salmon fed the 18% BPM diet showed a nonsignificant increase in liver mRNA levels of urate oxidase compared with the 0% BPM-fed fish, no further increase in mRNA levels was found in fish receiving 36% BPM. The discrepancy between urate oxidase mRNA and enzyme activity was explained by rapid mRNA degradation or alternatively, post-translational control of the activity. Although variable plasma and liver levels of urate were detected, the substrate increased only slightly in 36% BPM-fed fish, indicating that the uricolytic pathway of Atlantic salmon is intimately regulated to handle high dietary purine levels.  相似文献   

19.
Summary All the five enzymes of urea synthesis and the formation of urea in vitro can already be demonstrated in human liver as early as the 9th week of fetal development. At this stage the activity of carbamoyl phosphate synthetase is the highest, whereas that of ornithine carbamoyltransferase is the lowest as compared to those in the adult. The kinetic parameters of the urea cycle enzymes are the same in fetal liver as in adult liver, except that the Km values of ornithine carbamoyltransferase for L-ornithine are 3.5 mM and 0.42 mM in the fetus and in adult liver, respectively.Urea formation in vivo seems to begin in the second half of fetal life, and a gradual increase can be detected in the activity of the enzymes of urea synthesis. The activity of ortnithine decarboxylase, the glutamine-dependent carbamoyl phosphate synthetase and aspartate carbamoyltransferase, however, changes in the opposite direction.The concentration of carbamoyl phosphate and aspartate remains constant, but that of ornithine gradually decreases during ontogenesis. The ornithine, carbamoyl phosphate and aspartate pools are probably utilized in the polyamine, pyrimidine and urea syntheses at varying rates.  相似文献   

20.
The air-breathing ureogenic walking catfish (Clarias batrachus) faces various environmental constraints throughout the year leading to the problem of accumulation of toxic ammonia. In the present study, the possible role of conversion of accumulated ammonia to various non-essential free amino acids (FAAs) was tested in this fish under hyper-ammonia stress caused by exposing the fish at 25 mM NH(4)Cl for 7 days. Significant accumulation of ammonia of approximately two- to threefold was observed in different tissues (except in the brain), which was accompanied with the significant accumulation of non-essential FAAs in the NH(4)Cl-exposed fish. There was approximately two- to threefold increase of non-essential FAAs in different tissues and in the plasma of the NH(4)Cl-exposed fish compared to the control fish after 7 days of exposure, which was mainly attributable to the increase of Asp, Ala, Gly, Glu, Gln and taurine (Tau) concentrations in general, with certain tissue-specific variations. This was also accompanied with significant increase of activity of certain amino acid metabolism-related enzymes such as the glutamine synthetase (approx. two- to threefold), glutamate dehydrogenase (ammonia utilizing direction) (approx. twofold), aspartate and alanine aminotransaminases (approx. twofold) mainly in the liver, kidney and muscle of the NH(4)Cl-exposed fish. Thus, it appears that the walking catfish has the capacity of active conversion of accumulated ammonia to non-essential FAAs under condition of high concentrations of external ammonia. However, the increase of urea excretion rate due to active conversion of ammonia to urea via the induced urea cycle appears to be quantitatively much more important pathway than the increase of tissue levels of FAAs in dealing with a severe ammonia load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号