首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whether nectarivores or frugivores place selective pressure on the plants they feed on, in terms of nectar or fruit traits, is much debated. Globally sugar preferences, concentration preference and digestive ability of avian nectarivores have been extensively researched. In contrast, relatively little is known about mammalian nectarivores or frugivores in terms of these, particularly Old World species. Consequently effect of sugar type and concentration on food preference in Wahlberg's epauletted fruit bat Epomophorus wahlbergi was investigated. Pair-wise choice tests were conducted using equicaloric hexose and sucrose solutions at five different concentrations (5%-25%). It was expected that they would prefer hexose sugars as these are dominant in available indigenous fruits. However, bats preferred hexoses only when offered dilute (5%) concentrations. From 10% to 25% they showed a decrease in volume intake. Their body mass was generally higher and similar after feeding during the night with the exception of 5% concentration where the mean body mass decreased. When E. wahlbergi were offered a range of sucrose or hexose solutions (10%-25%) respectively, they showed no concentration preference in terms of total volume consumed, nor energy intake. These findings suggest that these fruit bats do not appear to act as a selective pressure on sugar composition in Old World fruit. In fruit bats with high energy requirements, dietary flexibility may be an advantage when faced with seasonal and unpredictable fruit availability.  相似文献   

2.
Nectarivory has evolved repeatedly in a number of unrelated bird taxa throughout the world and nectar feeding birds, regardless of their taxonomic affiliation, display convergent foraging and food processing adaptations that allow them to subsist on weak sugar solutions. However, phylogeny influences sugar type preferences of nectarivores. We investigated sugar preferences, assimilation efficiency and water flux in a Neotropical honeycreeper, the Bananaquit (Coereba flaveola; Coerebidae), a member of a radiation of tanagers and finches. Bananaquits showed no preference for nearly equicaloric (25% w/v) sucrose, glucose, fructose or glucose-fructose mixtures in pair-wise choice tests. In agreement with this lack of preference, they were equally efficient at absorbing sucrose and both hexoses. Apparent assimilation efficiency of these sugars was around 97.5%. In pair-wise tests, Bananaquits displayed a strong preference for the most concentrated sucrose solution when the lowest concentration ranged from 276 to 522 mM. Between 522 and 1120 mM sucrose solution concentrations, Bananaquits were able to adjust their volumetric food intake in order to maintain a constant energy intake. At solution concentration of 276 mM, birds could not maintain their rate of energy intake by increasing food consumption enough. We consider that at low sugar concentrations, Bananaquits faced a physiological constraint; they were unable to process food at a fast enough rate to meet their energy needs. We also explored the possibility that dilute nectars might be essential to sustain high water needs of Bananaquits by allowing them to control osmolarity of the food. Between 276 and 1120 mM sucrose solution concentrations, average amount of free water drunk by Bananaquits was independent of food concentration. They drank very little supplementary water and did not effectively dilute concentrated nectars. The evidence suggests that water bulk of dilute nectars is a burden to Bananaquits.  相似文献   

3.
We were interested in determining the feeding response of the Caribbean fruit fly, Anastrepha suspensa Loew (Diptera: Tephritidae), to various sugar concentrations to develop an improved bait for adults. We compared the consumption of 0.01-1.00 M concentrations of glucose, fructose, raffinose, and sucrose in no-choice tests for 24-h- and 6-d-old male and female flies. Sucrose was the most consumed sugar or within the most consumed group of sugars at 0.02-0.20 M concentrations. There were no differences in consumption among sugars at 0.01, 0.40, and 1.00 M. Consumption generally increased with increasing sugar concentration except that sucrose consumption peaked at 0.20 M. Twenty-four-hour females consumed less fructose than other sugars; 24-h males consumed more sucrose than fructose or raffinose, with an intermediate response to glucose. Females in the 6-d group consumed more sucrose than the other three sugars, whereas 6-d males exhibited no difference in consumption among sugars. In choice tests, flies consumed more sugar solution than water, but the difference between 0.20 M fructose and water was not significant for 24-h males or 24-h females. In choice tests between 0.20 M fructose and 0.20 M sucrose, both 24-h and 6-d females showed a preference for fructose. Males of both age classes showed no preference. These results indicate that the responses of flies to different sugars can vary by sugar, gender, and age.  相似文献   

4.
Flower-visiting bats encounter nectars that vary in both sugar composition and concentration. Because in the new world, the nectars of bat-pollinated flowers tend to be dominated by hexoses, we predicted that at equicaloric concentrations, bats would ingest higher volumes of hexoses than sucrose-containing nectars. We investigated the intake response of three species of Neotropical bats, Leptonycteris curasoae, Glossophaga soricina and Artibeus jamaicensis, to sugar solutions of varying concentrations (292, 438, 584, 730, 876, and 1,022 mmol L−1) consisting of either sucrose or 1:1 mixtures of glucose and fructose solutions. Bats did not show differences in their intake response to sucrose and 1:1 glucose–fructose solutions, indicating that digestion and absorption in bat intestines are designed under the principle of symmorphosis, in which no step is more limiting than the other. Our results also suggest that, on the basis of energy intake, bats should not prefer hexoses over sucrose. We used a mathematical model that uses the rate of sucrose hydrolysis measured in vitro and the small intestinal volume of bats to predict the rate of nectar intake as a function of sugar concentration. The model was a good predictor of the intake responses of L. curasoae and G. soricina, but not of A. jamaicensis.  相似文献   

5.
Nectar-feeding bats regulate their food ingestion in response to changes in sugar concentration as a way to achieve a constant energy intake. However, their digestive capability to assimilate sugars can limit their total energy intake, particularly when sugar concentration in nectar is low. Our experimental study evaluated the effect that changes in sugar concentration of nectar have on the foraging behavior of the nectar-feeding bats Glossophaga soricina and Leptonycteris yerbabuenae in captivity. We measured foraging behavior and food intake when bats fed at different concentrations of sucrose (5, 15, 25 and 35%wt/vol.). To compensate for low-energy intake, both bat species reduced their flight time, and increased feeding time when sugar concentration decreased. Our results suggest that nectar-feeding bats in nature confront two scenarios with complementary ecological effects: 1) bats feeding on dilute nectars (i.e. ≤15%wt/vol.) should increase the number of flowers visited per night enhancing pollination, and 2) bats feeding on concentrated nectars could spend more time flying, including long- and short-distance-flights increasing food patch exploration for use during subsequent nights, and thus enhancing plant gene flow. Further studies on foraging behavior of nectarivorous bats under natural conditions are necessary to corroborate these hypotheses.  相似文献   

6.
It has recently been recognized that flowers pollinated by generalist opportunistic nectarivores tend to have different nectar properties to those pollinated by specialist nectarivores (including both hummingbirds and specialist passerines). While renewed interest in specialist avian nectarivore sugar preferences and digestive physiology has helped explain the concentrated sucrose-dominated nectar of plants they feed on, there has been little progress in understanding why generalist or occasional nectar-feeding birds tend to be associated with flowers that have dilute hexose-dominated nectar. We examined sugar preferences and assimilation efficiencies over a range of concentrations, and concentration preferences, in Dark-capped Bulbuls Pycnonotus tricolor, one of the more common occasional avian nectarivores in southern Africa. Dark-capped Bulbuls showed significant preference for hexose sugar solutions, irrespective of concentration, when given a choice between hexose and sucrose solutions in equicaloric pair-wise choice tests conducted at five different concentrations (5–25%). This contrasts with results from specialist nectarivore groups which generally show a significant concentration-dependant switch in preference from hexose at low concentrations to sucrose at high concentrations for equicaloric solutions. In addition, Dark-capped Bulbuls showed an unusual lack of preference for solutions of higher sugar concentration when simultaneously offered four solutions varying in concentration from 10 to 25%. Dark-capped bulbuls also showed a unique effect of concentration on sugar assimilation efficiency, assimilating relatively more energy on 5% diets than on 25% diets. Although able to assimilate sucrose effectively, assimilation rates of hexose sugars were marginally higher. These results shed new light on pollination systems involving occasional nectarivores and, in particular, help to explain the prevalence of low concentration hexose-dominated nectars in flowers pollinated by these birds.  相似文献   

7.
The diets of frugivorous and nectarivorous vertebrates contain much water and generally have high energy but low protein contents. Therefore, we tested the prediction that to save energy under conditions of high energy demands and high water intake, frugivorous Egyptian fruit bats (Rousettus aegyptiacus) will increase both the absolute quantity and the proportion of ammonia in their urine. We also examined whether such changes occur when protein intake is low and water intake is high. We did three feeding trials. In trials 1 and 2, bats were fed one of four liquid diets containing constant soy protein concentrations but varying in sucrose concentration and were kept at ambient temperatures (T(a)) of 30 degrees Celsius and 12 degrees Celsius, respectively. In trial 3, bats were kept at Ta=12 degrees Celsius and fed one of four liquid diets with equal sucrose concentrations but varying protein concentrations. In trial 1, food intake at a sucrose concentration of 256 mmol/kg H(2)O was initially high but decreased to a constant rate with further increases in sucrose concentration, while in trial 2, food intake decreased exponentially with increasing sucrose concentration. As predicted, at 12 degrees Celsius with varying sucrose concentration, both the absolute quantity and the fraction of ammonia in the bats' urine increased significantly with food intake (P<0.02), while the absolute quantity of urea and the fraction of urea nitrogen excreted decreased significantly with food intake (P<0.03). Varying sucrose concentration had no significant effect on nitrogen excretion at Ta=30 degrees Celsius. Varying protein concentration had no significant effect on nitrogen excretion at Ta=12 degrees Celsius. We suggest that Egyptian fruit bats can increase ammonia excretion in response to increased energetic demands, and we calculate that they can save energy equal to approximately 2% of their daily metabolic rate by doing so.  相似文献   

8.
Nectarivorous bats include very dilute nectar in their natural diet, and recent work with Pallas's long-tongued bat Glossophaga soricina showed that sugar (energy) intake rate decreased at dilute sucrose solutions. However, chiropterophillous nectar is composed mainly of the hexoses glucose and fructose. Because bats fed hexose nectar would save the delay of hydrolyzing sucrose, we hypothesized that sugar intake rate should be higher on this diet than on sucrose nectar. We compared intake response in Pallas's long-tongued bats offered 1 : 1 glucose-fructose (hexose) and sucrose diets at 5%, 10%, 20%, 30%, and 40% (mass/volume) sugar solutions. We also tested the hypothesis that sucrose hydrolysis limits food intake in bats. Intake response was the same in bats fed both types of diet: sugar intake rate was lower in dilute solutions and then increased with sugar concentration. Similar intake responses in both diets indicate that sucrose hydrolysis alone does not limit food intake and support the idea that the burden of processing excess water in dilute solutions plays a major role.  相似文献   

9.
Many nectar-feeding bird species decrease food intake when sugar concentration in food is increased. This feeding response can be explained by two alternative hypotheses: compensatory feeding and physiological constraint. The compensatory feeding hypothesis predicts that if birds vary intake to maintain a constant energy intake to match energy expenditures, then they should increase intake when expenditures are increased. Broad-tailed hummingbirds were presented with sucrose solutions at four concentrations (292, 584, 876, and 1,168 mmol L(-1)) and exposed to two environmental temperatures (10 degrees and 22 degrees C). Birds decreased volumetric food intake in response to sugar concentration. However, when they were exposed to a relatively sudden drop in environmental temperature and, hence, to an acute increase in thermoregulatory energy expenditures, they did not increase their rate of energy consumption and lost mass. These results support the existence of a physiological constraint on feeding intake. A simple chemical reactor model based on intestinal morphology and in vitro measurements of sucrose hydrolysis predicted observed intake rates closely. This model suggests that intestinal sucrose hydrolysis rates were near maximal and, thus, may have imposed limits to sugar assimilation. Although sugar assimilation was high (95%), the proportions of excreted sucrose, glucose, and fructose found in excreta differed significantly. The monosaccharides glucose and fructose were about eight and three times more abundant than sucrose, respectively. Broad-tailed hummingbirds are small high-altitude endotherms that face unpredictable weather and the energetic expense of premigratory fattening. Digestive processes have the potential to impose severe challenges to their energy budgets.  相似文献   

10.
Nectar is an essential resource for bumblebees and many other flower-visiting insects. The main constituents of nectar are sugars, which vary in both composition and concentration between plant species. We assessed the influence of sugar concentration, sugar solution viscosity and sugar solution composition on the imbibition and energy intake rate of bumblebees, Bombus impatiens Cresson (Hymenoptera: Apidae). To do this, we measured their rate of solution intake for 49 different sugar solution treatments, which varied in both sugar composition and concentration. In general, the imbibition rates of bumblebees were found to increase with increasing sugar concentration, probably due to their preference for high sugar concentrations, up to a concentration of 27% (w/w), at which point solutions reached a threshold viscosity of approximately 1.5–1.6 mPa.s. Above this threshold, the increasing viscosity of the solutions physically inhibited the imbibition rates of bees, and imbibition rate began to decrease as the concentration increased. Nevertheless, bumblebee energy intake rate increased with increasing concentration up to about 42–56%. Although we found that sugar solution composition had an impact on both imbibition and energy intake rate, its effect was not as straightforward as that of sugar concentration and viscosity.  相似文献   

11.
Food intake in nectar-feeding animals is affected by food quality, their energetic demands, and the environmental conditions they face. These animals increase their food intake in response to a decrease in food quality, a behavior named “intake response”. However, their capacity to achieve compensatory feeding, in which they maintain a constant flux of energy, could be constrained by physiological processes. Here we evaluated how both a seasonal change in environmental conditions and physiological constraints affected the food ingestion in the bat Glossophaga soricina. We measured food intake rate during both the wet/warm and dry/cool seasons at sucrose solutions ranging from 146 to 1,022 mmol L−1. We expected that food intake and metabolic demands would be greater during the dry/cool season. Bats ingested ~20% more food in the dry/cool than in the wet/warm season. Regardless of season, bats were unable to achieve a constant flux of energy when facing the different sugar concentrations that we used in our experiments. This suggests that the rate of food intake is physiologically constrained in G. soricina. Using the digestive capacity of bats we modeled their food intake. The analytic model we used predicts that digestive limitations to ingest energy should have an important effect on the ecology of this species.  相似文献   

12.
Nectar is a solution of mainly three sugars: sucrose, glucose and fructose. Studies have demonstrated that pollinators have preferences according to the sugar composition presented in their diet, and these preferences may be caused by sugar assimilation capacities. However, sugar flavor could also play an important role for sugar preferences of nectar-feeding animals. We evaluated the sugar gustatory thresholds of the broad-billed hummingbird Cynanthus latirostris for sucrose, glucose, fructose and a 1:1 mixture of glucose-fructose. We presented eight C. latirostris to paired feeders containing either a sugar solution or pure water. Additionally, we conducted sugar preference tests at three different concentrations (146, 730 and 1022 mmol L− 1), to relate sugar preferences with sugar gustatory thresholds. C. latirostris had different gustatory thresholds for the three different sugars tested. At low sugar concentrations (146 mmol L− 1), sugar selection followed the gustatory thresholds. Hummingbird sugar preference patterns can be affected by different mechanisms, both pre- and post-ingestive. At low concentrations gustatory thresholds may play an important role to determine sugar selection. However, at intermediate and high concentrations, sugar assimilation rates, and velocity of food processing generated by osmotic constraints, can be the mechanisms that explain the sugar selection of these animals.  相似文献   

13.
Gray starlings Sturnus cineraceus, azure-winged magpies Cyanopica cyana and brown-eared bulbuls Hypsipetes amaurotis are among the main bird pests in commercial fruit orchards in central Japan. Recently Brugger & Nelms (1991) suggested that developing high-sucrose fruit cultivars could reduce crop damage, because some pest birds lack the enzyme sucrase and can develop an aversion to sucrose. Preferences for, and digestibilities of, the monosaccharides glucose and fructose and the disaccharide sucrose by these pests species were therefore studied to assess whether this idea would be applicable in central Japan. Gray starlings and brown-eared bulbuls were able to detect glucose, fructose, a mixture of glucose and fructose, and sucrose at a concentration of 12% w/v. Azure-winged magpies also detected glucose and fructose, but failed to detect sucrose at the same concentration. In pairwise preference trials gray starlings and azure-winged magpies selected the monosaccharides over sucrose, but brown-eared bulbuls did not. To estimate the digestibility of the sugars the apparent assimilated mass coefficient, AMC*, was calculated for each species eating each sugar by measuring intake and faecal output. Monosaccharides had mean AMC*s of 0.77, 0.96 and 0.92 when consumed by gray starlings, azure-winged magpies and brown-earned bulbuls respectively. AMC* values for sucrose were 0.82 and 0.49 for brown-eared bulbuls and azure-winged magpies respectively, but gray starlings were shown to be unable to digest sucrose. As AMC* values varied from 0.75 to 0.97, consumption rates of sugars increased as digestibility decreased. Although increasing sucrose contents of commercial fruits may deter sucrase-deficient birds such as gray starlings from depredating fruits, it may also lead to increased crop damage by species such as the azure-winged magpie and brown-eared bulbul which may have to consume more of the less digestible fruit in order to meet their energy requirements.  相似文献   

14.
Digestive capabilities of nectar-feeding vertebrates to assimilate sugars affect their ability to acquire and store energy and could determine the minimal temperatures at which these animals can survive. Here, we described the sugar digestive capability of Leptonycteris nivalis and related it with its capacity to live in cold environments. We measured the enzymatic activity, food intake rate and changes in body mass of bats feeding at four different sucrose concentrations (from 5 to 35% wt./vol.). Additionally, we used a mathematical model to predict food intake and compared it with the food intake of bats. L. nivalis was able to obtain ~ 111.3 kJ of energy regardless of the sugar concentration of their food. Also, bats gained ~ 2.57 g of mass during the experimental trials and this gain was independent of sugar concentration. The affinity (1 / Km) of sucrase (EC 3.2.1.48) was one order of magnitude higher relative to that reported for its sister species Leptonycteris yerbabuenae (0.250 and 0.0189 mmol? 1 L, respectively), allowing this species to have a higher energy intake rate. We propose that the high ability to acquire energy conferred L. nivalis the faculty to invade cold environments, avoiding in this way the ecological competition with its sympatric species L. yerbabuenae.  相似文献   

15.
Excessive sugar consumption could lead to high blood glucose levels that are harmful to mammalian health and life. Despite consuming large amounts of sugar‐rich food, fruit bats have a longer lifespan, raising the question of how these bats overcome potential hyperglycemia. We investigated the change of blood glucose level in nectar‐feeding bats (Eonycteris spelaea) and fruit‐eating bats (Cynopterus sphinx) via adjusting their sugar intake and time of flight. We found that the maximum blood glucose level of C. sphinx was higher than 24 mmol/L that is considered to be pathological in other mammals. After C. sphinx bats spent approximately 75% of their time to fly, their blood glucose levels dropped markedly, and the blood glucose of E. spelaea fell to the fast levels after they spent 70% time of fly. Thus, the level of blood glucose elevated with the quantity of sugar intake but declined with the time of flight. Our results indicate that high‐intensive flight is a key regulator for blood glucose homeostasis during foraging. High‐intensive flight may confer benefits to the fruit bats in foraging success and behavioral interactions and increases the efficiency of pollen and seed disposal mediated by bats.  相似文献   

16.
Sucrose, glucose, and fructose are the three sugars that commonly occur in floral nectar and fruit pulp. The relative proportions of these three sugars in nectar and fruit in relation to the sugar preferences of pollinators and seed dispersers have received considerable attention. Based on the research of Herbert and Irene Baker and their collaborators, a dichotomy between sucrose‐dominant hummingbird‐pollinated flowers and hexose‐dominant passerine flowers and fruits was proposed. Data on sugar preferences of several hummingbird species (which prefer sucrose) vs. a smaller sample of passerines (which prefer hexoses) neatly fitted this apparent dichotomy. This hummingbird–passerine dichotomy was strongly emphasized until the discovery of South African plants with sucrose‐dominant nectars, which are pollinated by passerines that are able to digest, and prefer sucrose. Now we know that, with the exception of two clades, most passerines are able to assimilate sucrose. Most sugar preference studies have been conducted using a single, relatively high, sugar concentration in the nectar (ca 20%). Thus, we lack information about the role that sugar concentration might play in sugar selection. Because many digestive traits are strongly affected not only by sugar composition, but also by sugar concentration, we suggest that preferences for different sugar compositions are concentration‐dependent. Indeed, recent studies on several unrelated nectar‐feeding birds have found a distinct switch from hexose preference at low concentrations to sucrose preference at higher concentrations. Finally, we present some hypotheses about the role that birds could have played in molding the sugar composition of plant rewards.  相似文献   

17.
Nectar-feeding animals increase their food intake when nectar sugar concentration decreases. However, some species present physiological constraints that limit their energy intake when nectar is diluted. We hypothesized that gut capacities of bats affect the ability of these animals to acquire and store energy, modifying how they use food resources in the field. We measured the food intake and changes in body mass of the members of an assemblage of nectar-feeding bats (Choeronycteris mexicana, Leptonycteris yerbabuenae, and Glossophaga soricina) feeding on sucrose solutions of different concentrations (146, 292, 438, 584, 730, 876, and 1,022 mmol L(-1)). The three bat species presented differences in their food intake and their capacity to store energy. While C. mexicana was able to maintain a constant energy intake at all concentrations tested, G. soricina and L. yerbabuenae decreased their sugar/energy intake at the lowest sugar concentrations. Choeronycteris mexicana also increased body mass independent of sugar concentration, while G. soricina and L. yerbabuenae did not. On the basis of our results, we generated a model relating gut capacities and the use of food resources in the field. Our model's predictions and field data support the idea that digestive traits affect the way these animals use the food resources present in their environment.  相似文献   

18.
We investigated the intake response of the nectarivorous Pallas's long-tongued bat Glossophaga soricina to different nectar concentrations to test the hypothesis that bats show compensatory feeding. Bats were offered sucrose solutions between 146 and 1,168 mmol L(-1). Contrary to our expectations, long-tongued bats did not show compensatory feeding, suggesting that volumetric food intake is physiologically constrained. Energy intake was lower at the most dilute solutions (146-584 mmol L(-1)) and then remained relatively constant at more concentrated diets (876 and 1,168 mmol L(-1)). The shape of the observed intake response was very similar to the one predicted by a model dependent on intestinal morphology and in vitro sucrase activity. However, the model predicted higher volumetric food intake at the lower concentrations tested, which suggests that the intestines of the bats were not functioning to their full capacity. Rates of sucrose hydrolysis and water processing probably constrain food intake in long-tongued bats as diets get more dilute.  相似文献   

19.
罗汉果果肉中糖类物质组成与含量分析   总被引:1,自引:0,他引:1  
罗汉果果实中富含糖分,糖类物质的组成及其含量对果实的内在品质有重要影响,然而多年来对其品质的研究多集中在罗汉果苷上,果实中可溶性糖种类与含量迄今尚未见有系统地报道。该研究以干燥的罗汉果果实为材料,采用PMP柱前衍生化一高效液相色谱紫外检测法、高效液相色谱示差折光检测法分别检测果肉中可溶性糖的种类与含量,并进行方法学考察。结果表明:PMP柱前衍生化一高效液相色谱紫外检测法只能检出罗汉果果实中存在的2种还原性醛糖——葡萄糖、甘露糖;而高效液相色谱示差折光检测法则可一次性检出葡萄糖、果糖、蔗糖、棉籽糖、多糖5种糖分。与柱前衍生化法相比,高效液相色谱示差折光检测法更适合用来全面分析罗汉果果实中糖分的种类和含量。不同罗汉果品种果实中糖的组分一致,但含量有显著差别。另外,样品的干燥方式会影响果实中的总糖及各组分的相对含量。冻干果肉中蔗糖和葡萄糖相对含量最高,烘干则导致蔗糖和葡萄糖下降,果糖与多糖相对含量增加。  相似文献   

20.
Pathways of Uptake and Accumulation of Sugars in Tomato Fruit   总被引:2,自引:0,他引:2  
The route of sucrose unloading from the conducting tissue, theregulation of sucrose hydrolysis and the uptake and subsequentmetabolism of sugars were investigated in the rapidly growingtomato fruit. During the first two weeks of fruit enlargement, the vacuoleaccounted for more than 85% of the protoplast volume and theintercellular space accounted for 20% of the fruit placentaltissue. The plasmodesmatal frequency was highest between phloemparenchyma cells and lowest between phloem sieve cells and phloemparenchyma. The total invertase activity was about 8 µmolglucose g–1 d. wt min–1 during the rapid growingperiod and increased six-fold at ripening. The wall-bound invertaseaccounted for less than 11% of the total activity. Invertaseactivity increased with increasing sucrose concentrations (upto 50 mM) in the incubation medium, but decreased at higherconcentrations. Sucrose synthase activity could only be detectedwhen fruit was older than 19 d. The uptake and metabolism of sugars by fruit cells were investigatedby incubation of fruit slices with 14C-sugars for 3 h. The uptakeof sucrose increased with the sucrose concentration up to 200mM. The rate of glucose uptake and its conversion to the ethanol-insolublefraction were higher than those of sucrose. The uptake of sucrosedid not compete with that of glucose or vice versa, providedthe osmotic potential of the incubation solution was maintainedconstant. The uptake of sucrose was not inhibited by metabolicinhibitors such as PCMBS, CCCP, sodium azide or vanadate. TheATPase activity in the fruit tissue was low. These findings did not identify conclusively the mode of sucroseunloading. However, the uptake of sugars by fruit cells is non-specificand does not appear to require a membrane carrier or plasmalemmaATPase to provide energy for sucrose uptake. Fruit, invertase, Lycopersicon esculentum, phloem unloading, plasmodesmata, sucrose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号