首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsai IH  Wang YM  Hseu MJ 《Biochimie》2011,93(2):277-285
Trimucrotoxin (TmCT) is an Asn6-containing phospholipase A2 (PLA2) from Protobothrops mucrosquamatus (pit-viper) venom. In an attempt to characterize the amino acid residues responsible for the neurotoxic and anticoagulant activities of TmCT, the recombinant fusion proteins of TmCT wild type and mutants were expressed in Escherichia coli. Correct refolding and processing of 37 TmCT mutants were confirmed by their HPLC retention times, circular dichroism spectra, and masses obtained from ESI-MS spectrometry. Each mutant was assayed by pH-stat titration using zwitterionic as well as anionic micelle substrates, and the neurotoxicity was evaluated by using the contractile responses of chick biventer cervicis muscles. The results demonstrated that the residues Asn1, Asn6, Lys7, Ile11, Met12, Gly53, Thr79, His108 and Met118 are important to TmCT neurotoxicity. Through various tests, we also confirmed that enzymatic activity, as opposed to binding to Factor Xa, was a necessary part of TmCT’s anticoagulant effect. In addition, pulldown assays of the WT and selected mutants revealed that TmCT’s in vitro binding to crotoxin acidic subunit may involve a broad surface area. We conclude that the hot spot mutations at specific positions 53, 79, 108, and 118 during the pit-viper Asn6-PLA2 evolution regulate their neurotoxicities, and that many of the neurotoxic site residues and the anticoagulant mechanism of TmCT are different from those of ammodytoxin A (a true-viper venom neurotoxic PLA2).  相似文献   

2.
Abstract

The sequence region 55–74 of the α-subunit of the acetylcholine receptor (AChR) from Torpedo californica electroplax comprises the amino-terminal end of a sequence segment—residues α67–76—forming the main immunogenic region (MIR), which is most frequently recognized by anti-AChR autoantibodies in myasthenia gravis. The synthetic sequence α55–74 of Torpedo AChR binds α-bungarotoxin (αBTX), suggesting that amino acid residues within this sequence region may contribute to formation of an αBTX binding site.

Using single-residue substituted synthetic analogues of the sequence α55–74 of Torpedo AChR, in which each residue was sequentially substituted by either glycine or alanine, we sought identification of the amino acids involved in interaction with α-neurotoxins and with three different anti-MIR monoclonal antibodies (mAbs 6, 22, and 198). Substitution of Arg55, Arg57, Trp60, Arg64, Leu65, Arg66, Trp67, or Asn68 strongly inhibited α-toxin binding, whereas substitutions of Ile61, Val63, Pro69, Ala70, Asp71, or Tyr72 had marginal effects. Substitutions within the region α68–72 significantly diminished binding of anti-MIR mAbs, although residue preferences differed among mAbs. Further, substituting Trp60 substantially reduced binding of mAb 198, and moderately affected binding of mAb 6, and substitution of Asp62 slightly but consistently affected binding of mAbs 6 and 22.  相似文献   

3.
The insecticidal activities and specificities of the Vip3Aa proteins derived from different Bt strains are very different, although the similarities between these proteins are higher than 95%. In this study, we hypothesised that the differences in Vip3Aa11 and Vip3Aa39 C-terminal amino acids determine their differences in insecticidal activity against three Lepidoptera insects. To find the amino acid residues associated with insecticidal activity, nine different amino acid residues of Vip3Aa11 were substituted with the corresponding amino acid residues from Vip3Aa39 by site-directed mutagenesis. The toxicity of each protein was estimated by bioassays, and the results demonstrated that the mutant Y784N lost its insecticidal activity against three insects (Agrotis ipsilon, Helicoverpa armigera, and Spodoptera exigua). The insecticidal activity of S543N, I544L, and S686R against S. exigua increased 5-fold, 2.65-fold, and 8.98-fold, while the toxicity to H. armigera and A. ipsilon slightly decreased compared with that of the Vip3Aa11 protein. These findings indicate that the amino acid residues Ser543, Ile544, Thr685, Ser686, Arg704, Ile780, and Tyr784 may be insecticidal activity-related residues. Additionally, the trypsin activation of the four mutants indicated that all proteins can form a 62-kDa core fragment, except Y784N. A possible association between the insecticidal activity and trypsin sensitivity of Vip3A proteins is suggested.  相似文献   

4.
The complete amino acid sequence of human A-I has been determined by manual and automated Edman degradation of intact and peptide fragments of A-I. A-I is a single chain protein of 243 residues with the following amino acid composition: Asp16, Asn5, Thr10, Ser15, Glu27, Gln19, Pro10, Gly10, Ala19, Val13, Met3, Leu37, Tyr7, Phe6, Trp4, Lys21, His5, and Arg16. The amino acid sequence contains no linear segments of hydrophobic or hydrophilic residues. A detailed correlation of the amino acid sequence, conformation, and self association of A-I will add further insight into the molecular mechanisms involved in protein-protein and protein-lipid interactions.  相似文献   

5.
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.  相似文献   

6.
Chen X  Wang L  Wang H  Chen H  Zhou M  Chen T  Shaw C 《Peptides》2011,32(1):26-30
Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes—common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.  相似文献   

7.
Catalytic antibody 7B9, which was elicited against p-nitrobenzyl phosphonate transition-state analogue (TSA) 1, hydrolyzes a wide range of p-nitrobenzyl monoesters and thus shows broad substrate tolerance. To reveal the molecular basis of this substrate tolerance, the 7B9 Fab fragment complexed with p-nitrobenzyl ethylphosphonate 2 was crystallized and the three-dimensional structure was determined. The crystal structure showed that the strongly antigenic p-nitrobenzyl moiety occupied a relatively shallow antigen-combining site and therefore the alkyl moiety was located outside the pocket. These results support the observed broad substrate tolerance of 7B9 and help rationalize how 7B9 can catalyze various p-nitrobenzyl ester derivatives. The crystal structure also showed that three amino acid residues (AsnH33, SerH95, and ArgL96) were placed in key positions to form hydrogen bonds with the phosphonate oxygens of the transitions-state analogue. In addition, the role of these amino acid residues was examined by site-directed mutagenesis to alanine: all mutants (AsnH33Ala, SerH95Ala, and ArgL96Ala) showed no detectable catalytic activity. Coupling the findings from our structural studies with these mutagenesis results clarified the structural basis of the observed broad substrate tolerance of antibody 7B9-catalyzed hydrolyses. Our findings provide new strategies for the generation of catalytic antibodies that accept a broad range of substrates, aiding their practical application in synthetic organic chemistry.  相似文献   

8.
Recent studies have shown that human solute carrier SLC19A3 (hSLC19A3) can transport pyridoxine (vitamin B6) in addition to thiamine (vitamin B1), its originally identified substrate, whereas rat and mouse orthologs of hSLC19A3 can transport thiamine but not pyridoxine. This finding implies that some amino acid residues required for pyridoxine transport, but not for thiamine transport, are specific to hSLC19A3. Here, we sought to identify these residues to help clarify the unique operational mechanism of SLC19A3 through analyses comparing hSLC19A3 and mouse Slc19a3 (mSlc19a3). For our analyses, hSLC19A3 mutants were prepared by replacing selected amino acid residues with their counterparts in mSlc19a3, and mSlc19a3 mutants were prepared by substituting selected residues with their hSLC19A3 counterparts. We assessed pyridoxine and thiamine transport by these mutants in transiently transfected human embryonic kidney 293 cells. Our analyses indicated that the hSLC19A3-specific amino acid residues of Gln86, Gly87, Ile91, Thr93, Trp94, Ser168, and Asn173 are critical for pyridoxine transport. These seven amino acid residues were found to be mostly conserved in the SLC19A3 orthologs that can transport pyridoxine but not in orthologs that are unable to transport pyridoxine. In addition, these residues were also found to be conserved in several SLC19A2 orthologs, including rat, mouse, and human orthologs, which were all found to effectively transport both pyridoxine and thiamine, exhibiting no species-dependent differences. Together, these findings provide a molecular basis for the unique functional characteristics of SLC19A3 and also of SLC19A2.  相似文献   

9.
A full-length cDNA coding lipoprotein lipase (LPL) was cloned from liver of adult common carp (Cyprinus carpio Var. Jian) by RT-PCR and rapid amplification of cDNA ends (RACE) approaches. The cDNA obtained was 2,411 bp long with a 1,524 bp open reading frame (ORF) encoding 507 amino acids. This amino acid sequence contains two structural regions: N-terminus (24–354 residues) and C-terminus (355–507 residues). Before N-terminus, 1–23 residues is signal peptide, 6–23 residues is transmembrance helix. At N-terminus, some conversed functional sites were found, including two N-linked glycosylation sites Asn41 and Asn88; one catalytic triad Ser174, Asp198 and His283; one conserved heparin-binding site Arg321 to Arg324 (RKNR); eight cysteines residues Cys69 and Cys82, Cys258 and Cys281, Cys306 and Cys325, Cys317 and Cys320 which are involved in four disulfide bridges; one polypeptide “lid” that participates in substrate specificity. At C-terminus, Asn401 is another N-linked glycosylation site, and Trp434 and Trp435 (WW) is lipid-binding site. The amino acid sequence has a high similarity, and shows similar structural features to LPL of other species. Tissue distribution of LPL mRNA in liver, head kidney, mesenteric adipose tissue, heart and white muscle of common carp was analyzed by semi-quantitative RT-PCR method using β-actin gene as internal control. The result showed that the expressions of LPL mRNA were detected in all examined tissues of common carp. The expression levels of LPL in the mesenteric adipose tissue was highest among these tissues, following in liver and head kidney, and the lowest expression was found in heart and white muscle.  相似文献   

10.
β-Glucosidases (Glu1 and Glu2) in maize specifically interact with a lectin called β-glucosidase aggregating factor (BGAF). We have shown that the N-terminal (Glu50–Val145) and the C-terminal (Phe466–Ala512) regions of maize Glu1 are involved in binding to BGAF. Sequence comparison between sorghum β-glucosidases (dhurrinases, which do not bind to BGAF) and maize β-glucosidases, and the 3D-structure of Glu1 suggested that the BGAF-binding site on Glu1 is much smaller than predicted previously. To define more precisely the BGAF-binding site, we constructed additional chimeric β-glucosidases. The results showed that a region spanning 11 amino acids (Ile72–Thr82) on Glu1 is essential and sufficient for BGAF binding, whereas the extreme N-terminal region Ser1–Thr29, together with C-terminal region Phe466–Ala512, affects the size of Glu1–BGAF complexes. The dissociation constants (Kd) of chimeric β-glucosidase–BGAF interactions also demonstrated that the extreme N-terminal and C-terminal regions are important but not essential for binding. To confirm the importance of Ile72–Thr82 on Glu1 for BGAF binding, we constructed a chimeric sorghum β-glucosidase, Dhr2 (C-11, Dhr2 whose Val72–Glu82 region was replaced with the Ile72–Thr82 region of Glu1). C-11 binds to BGAF, indicating that the Ile72–Thr82 region is indeed a major interaction site on Glu1 involved in BGAF binding.  相似文献   

11.
Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu312–Arg322 and Arg323–Lys350) and extracellular FPR1 peptide (Ile191–Arg201) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala323–Lys350 only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr325, Ser328, Thr329, Thr331, Ser332, Thr334, and Thr339. No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nm. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of FPR1 phosphorylation can be monitored with C-terminal tail FPR1-phosphospecific antibodies.  相似文献   

12.
Amino acid composition of the CGMMV* coat protein was determined to be as follows: Asp20, Thr10, Ser24, Glu10. Pro6, Gly9, Ala21, Val7, Ile7, Leu18, Tyr4, Phe9, Lys4, His1, Arg8, Trp2. No terminal α-amino group was detected by dinitrophenylation method. The carboxyl-terminus was found to be serine by hydrazinolysis of the protein and digestion with carboxypeptidase A.

For sequence analysis of the coat protein, tryptic digestion was accomplished at pH 8.0 resulting in ten soluble and several insoluble peptides at pH 4.5. The amino acids contained in soluble peptides accounted for 91 out of 160 residues in the whole protein. The amino acid sequences of ten soluble peptides were determined.

From the similarities of amino acid sequence of the peptides to those of TMV* protein, CGMMV was assumed to be a strain of TMV group.  相似文献   

13.
Klebsiella pneumoniae strain DF12SA (HQ114261) was isolated from diabetic foot wounds. The strain showed resistance against ampicillin, kanamycin, gentamicin, streptomycin, spectinomycin, trimethoprim, tetracycline, meropenem, amikacin, piperacillin/tazobactam, augmentin, co-trimoxazole, carbapenems, penicillins and cefoperazone, and was sensitive to clindamycin. Molecular characterization of the multidrug-resistance phenotype revealed the presence of a class 1 integron containing two genes, a dihydrofolate reductase (DHFR) (PF00186), which confers resistance to trimethoprim; and aminoglycoside adenyltransferase (AadA) (PF01909), which confers resistance to streptomycin and spectinomycin. A class 1 integron in K. pneumoniae containing these two genes was present in eight (18.18 %) out of 44 different diabetic foot ulcer (DFU) patients. Hence, there is a need to develop therapeutics that inhibit growth of multidrug resistant K. pneumoniae in DFU patients and still achieve amputation control. Am attempt was made to create a 3D model and find a suitable inhibitor using an in silico study. Rational drug design/testing requires crystal structures for DHFR and AadA. However, the structures of DHFR and AadA from K. pneumoniae are not available. Modelling was performed using Swiss Model Server and Discovery Studio 3.1. The PDBSum server was used to check stereo chemical properties using Ramachandran plot analysis of modeled structures. Clindamycin was found to be suitable inhibitor of DHFR and AadA. A DockingServer based on Autodock & Mopac was used for docking calculations. The amino acid residues Ser32, Ile46, Glu53, Gln54, Phe57, Thr72, Met76, Val78, Leu79, Ser122, Tyr128, Ile151 in case of DHFR and Phe34, Asp60, Arg63, Gln64, Leu68, Glu87, Thr89, Val90 for AadA were found to be responsible for positioning clindamycin into the active site. The study identifies amino acid residues crucial to ‘DHFR and AadA -drug’ and ‘DHFR and AadA -inhibitor’ interactions that might be useful in the ongoing search for a versatile DHFR and AadA -inhibitor.  相似文献   

14.
Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn85, Phe168, and Trp182. The propensity of the cYY tyrosyl to point toward Arg386 was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy.  相似文献   

15.
The human genome encodes six proteins of family 18 glycosyl hydrolases, two active chitinases and four chitinase-like lectins (chi-lectins) lacking catalytic activity. The present article is dedicated to homology modeling of 3D structure of human chitinase 3-like 2 protein (CHI3L2), which is overexpressed in glial brain tumors, and its structural comparison with homologous chi-lectin CHI3L1. Two crystal structures of CHI3L1 in free state (Protein Data Bank codes 1HJX and 1NWR) were used as structural templates for the homology modeling by Modeller 9.7 program, and the best quality model structure was selected from the obtained model ensemble. Analysis of potential oligosaccharide-binding groove structures of CHI3L1 and CHI3L2 revealed significant differences between these two homologous proteins. 8 of 19 amino acid residues important for ligand binding are substituted in CHI3L2: Tyr34/Asp39, Trp69/Lys74, Trp71/Lys76, Trp99/Tyr104, Asn100/Leu105, Met204/Leu210, Tyr206/Phe212 and Arg263/His271. The differences between these residues could influence the structure of the ligand-binding groove and substantially change the ability of CHI3L2 to bind oligosaccharide ligands.  相似文献   

16.
Some physicochemical properties of neutral proteinases I and II, zinc-containing metalloenzymes, from Aspergillus sojae were investigated.

Neutral proteinase I: The enzyme protein had a sedimentation coefficient of 3.90S, an intrinsic viscosity of 0.0315 dl/g, and a partial specific volume, calculated from the amino acid and carbonhydrate composition, of 0.715 cm3/g. The molecular weight was 42,200 from the Yphantis’ procedure, and was 42,500 from the calculation according to the Scheraga-Mandel-kern’s formula. The integral numbers of amino acid residues per molecule calculated on the basis of 42,200 as molecular weight were as follows; Lys16, His6, Arg13, Trp8, Asp56, Thr25, Ser23, Glu31, Pro18, Gly40, Ala33, l/2Cys4, Val11, Met6, Ile15, Leu25, Tyr20, Р?е10, (amide-ammonia)29, in addition to mannose6, galactose1, hexosamine3.

Neutral proteinase II: The enzyme protein had a sedimentation coefficient of 2.32S, an intrinsic viscosity of 0.0270 dl/g, and a calculated partial specific volume of 0.714 cm3/g. The molecular weight was 16,800 from the Yphantis’ procedure, and was 18,000 from the sedimentation and intrinsic viscosity. The following amino acid compositions was calculated on the basis of 16,800 as molecular weight; Lys8, His3, Arg3, Asp19, Thr17, Ser11, GIu23, Pro5, Gly9, Ala24, l/2Cys4, Val5, Ile3, Leu13, Tyr10, Phe3, (amide-ammonia)15. In the enzyme preparation, neither methionine nor tryptophan was detected and carbohydrate was also absent.

In both neutral proteinases I and II, no free SH group was detected by the PCMB-titration in the presence of 8 M urea.  相似文献   

17.
An improved method has been described for the isolation and purification of γ globulin from rice embryo. The method involves the extraction with phosphate buffer, pH 7.0 and ionic strength 0.1, the fractionation in saline solution of ionic strength 0.31, the removal of nucleic acids by precipitation with ammonium sulfate and the gel filtration chromatography on a Sephadex G-200 column. Although the preparations exhibited homogeneous patterns in sedimentation analysis, the electrophoretic patterns on polyacrylamide gels at pH 8.35 and ionic strength 0.11 exhibited at least two components. Three major components, γ1, γ2 and γ3 globulins, were isolated by ion exchange chromatography on a DEAE Sephadex A-50 column. These components were revealed to be homogeneous in electrophoresis as well as sedimentation. N-Terminal amino acid compositions have also been described.

The molecular weight of γ1 globulin was determined as 2.0 × 105 by the Archibald method, and the intrinsic viscosity, [η], and the sedimentation coefficient, s20, w°, were found to be 0.0424 dl/g and 7.26S respectively. These values indicated the large asymmetry of the protein. The protein was composed of 18 residues of hexose, 3 residues of pentose, 6 residues of hexosamine and 1751 residues of amino acids: Lys58, His47, Arg148, Asp126, Glu273, Gly161, Ala144, Val121, Leu106, Ile72, Pro83, Ser136, Thr48, Hyp68, Cys17, Met16, Tyr44, Trp8, Phe75 and amide ammonia163. The N-terminal amino acid analysis suggested that the protein was composed of ten subunits. The properties and the composition were discussed in comparison with those of the 7S globulin of soybean cotyledon.  相似文献   

18.
The α-l-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-l-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp252, Asp257, Asp264, Glu530, Arg548, His553, and Trp555) and may form the hydrophobic pocket in stabilizing donor (Trp261, Tyr302, Tyr316, and Trp369) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp257. Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.  相似文献   

19.
A role for N-linked oligosaccharides on the biochemical properties of recombinant α-l-arabinofuranosidase 54 (AkAbf54) defined in glycoside hydrolase family 54 from Aspergillus kawachii expressed in Pichia pastoris was analyzed by site-directed mutagenesis. Two N-linked glycosylation motifs (Asn83–Thr–Thr and Asn202–Ser–Thr) were found in the AkAbf54 sequence. AkAbf54 comprises two domains, a catalytic domain and an arabinose-binding domain classified as carbohydrate-binding module 42. Two N-linked glycosylation sites are located in the catalytic domain. Asn83, Asn202, and the two residues together were replaced with glutamine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the wild-type and mutant enzymes expressed in P. pastoris were examined. The N83Q mutant enzyme had the same catalytic activity and thermostability as the wild-type enzyme. On the other hand, the N202Q and N83Q/N202Q mutant enzymes exhibited a considerable decrease in thermostability compared to the glycosylated wild-type enzyme. The N202Q and N83Q/N202Q mutant enzymes also had slightly less specific activity towards arabinan and debranched arabinan. However, no significant effect on the affinity of the mutant enzymes for the ligands arabinan, debranched arabinan, and wheat and rye arabinoxylans was detected by affinity gel electrophoresis. These observations suggest that the glycosylation at Asn202 may contribute to thermostability and catalysis.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) plays a pivotal role in glucose homeostasis through its receptor GLP1R. Due to its multiple beneficial effects, GLP-1 has gained great attention for treatment of type 2 diabetes and obesity. However, little is known about the molecular mechanism underlying the interaction of GLP-1 with the heptahelical core domain of GLP1R conferring high affinity ligand binding and ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R, we determined that the evolutionarily conserved amino acid residue Arg380 flanked by hydrophobic Leu379 and Phe381 in extracellular loop 3 (ECL3) may have an interaction with Asp9 and Gly4 of the GLP-1 peptide. The molecular modeling study showed that Ile196 at transmembrane helix 2, Met233 at ECL1, and Asn302 at ECL2 of GLP1R have contacts with His1 and Thr7 of GLP-1. This study may shed light on the mechanism underlying high affinity interaction between the ligand and the binding pocket that is formed by these conserved residues in the GLP1R core domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号