首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of energy homeostasis by thyroid hormones is unquestionable, and iodothyronine deiodinases are enzymes involved in the metabolic activation or inactivation of these hormones at the cellular level. T3 is produced through the outer ring deiodination of the prohormone T4, which is catalyzed by types 1 and 2 iodothyronine deiodinases, D1 and D2. Conversely, type 3 iodothyronine deiodinase (D3) catalyzes the inner ring deiodination, leading to the inactivation of T4 into reverse triiodothyronine (rT3). Leptin acts as an important modulator of central and peripheral iodothyronine deiodinases, thus regulating cellular availability of T3. Decreased serum leptin during negative energy balance is involved in the down regulation of liver and kidney D1 and BAT D2 activities. Moreover, in high fat diet induced obesity, instead of increased serum T3 and T4 secondary to higher circulating leptin and thyrotropin levels, elevated serum rT3 is found, a mechanism that might impair the further increase in oxygen consumption.  相似文献   

2.
3.
4.
The experiment was conducted to compare the effect of different selenium sources on the expression of glutathione peroxidase 1 (GPx1) and iodothyronine deiodinase 1 (Dio1) mRNA in mice by quantitative real-time PCR. A total of 60 male Kunming mice at average body weight of 20 g were allotted to three groups in a randomized complete block design, namely two treatments and one control. Mice in Group 1 were fed a basal diet as control, while mice in Groups 2 and 3 were fed the basal diet supplemented with 0.1 mg/kg selenium as sodium selenite or selenized yeast, respectively. Whole feeding experiment lasted for 30 d. At the end of the feeding trial, liver mRNA levels of GPx1 and Dio1 were determined by quantitative real-time PCR, as well as growth performance, body composition, blood and GPx activity were determined. The results showed that no significant differences in overall growth performance and body composition, including body weight, body length, heart weight, kidney weight and liver weight, were found between the experimental groups (P>0.05). Blood GPx activity increased in all of the selenium supplemented groups compared with control group (P<0.01). However, blood GPx activity in selenized yeast group was higher than that in sodium selenite group (P<0.05). Liver mRNA levels of GPx1 and Dio1 also increased in the two selenium supplemented groups compared with the control group (P<0.05), while there was no significant difference between the sodium selenite and selenized yeast groups (P>0.05). In conclusion, selenium increased the mRNA expression of GPx1 and Dio1 genes in murine liver, and there was no significant difference between the organic or inorganic form of selenium used.  相似文献   

5.
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.  相似文献   

6.
The thyroid hormone derivative N-bromoacetyl-3,3',5-triiodothyronine (BrAcT3) acts as an active site-directed inhibitor of rat liver iodothyronine deiodinase. Lineweaver Burk analysis of enzyme kinetic measurements showed that BrAcT3 is a competitive inhibitor of the 5'-deiodination of 3,3',5'-triiodothyronine (rT3) with an apparent Ki value of 0.1 nM. Preincubations of enzyme with BrAcT3 indicated that inhibition by this compound is irreversible. The inactivation rate obeyed saturation kinetics with a limiting inactivation rate constant of 0.35 min-1. Substrates and substrate analogs protected against inactivation by BrAcT3. Covalent incorporation of 125I-labeled BrAcT3 into "substrate-protectable" sites was proportional to the loss of deiodinase activity. The results suggest that BrAcT3 is a very useful affinity label for rat liver iodothyronine deiodinase.  相似文献   

7.
Ligand binding characteristics of rat liver microsomal type I iodothyronine deiodinase were evaluated by measuring dose-response inhibition and apparent Michaelis-Menten or inhibitor constants of iodothyronine analogues to compete as substrates or inhibitors for the natural substrate L-thyroxine. These data show strong correlations with the binding requirements of hormone analogues to serum thyroxine-binding prealbumin since iodothyronine analogues with a negatively charged side chain, a negative charge or hydrogen bonding function in the 4'-position, tetraiodo ring substitution, and a skewed hormone conformation are structural features shared in common which markedly affect enzyme activity and protein binding affinity. 3,3',5'-Triiodo-L-thyronine is the most potent natural substrate (IC50 = 0.3 microM) and tetraiodothyroacetic acid is the most potent inhibitor (IC50 = 0.2 microM). Both thyroxine (T4)-5'- and T4-5-deiodination pathways are inhibited by these potent analogues, providing further evidence for a single enzyme catalyzing the rat liver microsomal deiodination reactions. These data also show that L-hormone analogues are preferentially deiodinated via the T4-5'-deiodination pathway, whereas D-analogues produce products via the T4-5-deiodination pathway. The thyroxine-binding prealbumin complex was used to model the interaction of thyroid hormones with the deiodinase active site. Computer graphic modeling of the prealbumin complex showed that only those analogues which are potent deiodinase inhibitors or substrates can be accommodated in the hormone binding site. This model suggests the design of functionally specific ligands which can modulate peripheral thyroid hormone metabolism and act as antithyroidal drugs.  相似文献   

8.
Selenium deficiency impairs thyroid hormone metabolism by inhibiting the synthesis and activity of the iodothyronine deiodinases, which convert thyroxine (T4) to the more metabolically active 3,3′-5 triiodothyronine (T3). Hepatic type I iodothyronine deiodinase, identified in partially purified cell fractions using affinity labeling with [125I]N-bromoacetyl reverse triiodothyronine, is also labeled with75Se by in vivo treatment of rats with75Se-Na2SeO3. Thus, the type I iodothyronine 5′-deiodinase is a selenoenzyme. In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone. These results indicate that a concurrent selenium deficiency could be a major determinant of the severity of iodine deficiency.  相似文献   

9.
10.
Selenium deficiency impairs thyroid hormone metabolism by inhibiting the synthesis and activity of the iodothyronine deiodinases, which convert thyroxine (T4) to the more metabolically active 3,3′–5 triiodothyronine (T3). Hepatic type I iodothyronine deiodinase, identified in partially purified cell fractions using affinity labeling with [125I]N-bromoacetyl reverse triiodothyronine, is also labeled with75Se by in vivo treatment of rats with75Se−Na2SeO3. Thus, the type I iodothyronine 5′-deiodinase is a selenoenzyme. In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone. These results indicate that a concurrent selenium deficiency could be a major determinant of the severity of iodine deficiency.  相似文献   

11.
To find out whether an inhibitor of extrathyroidal conversion of iodothyronines is present in sera of starved animals, pig liver and kidney homogenates were incubated with T4, T3 or rT3 and dithiotreitol in the presence of evaporated diethyl ether extracts of sera obtained from fed and starved (1-12 days) rabbits. Sera extracts of short-term (1-4 days) starved rabbits caused a significant inhibition of T4 to T3 conversion (54% on day 3) and T4 to rT3 deiodination (52% on day 2) in liver homogenates. Extracts of sera from long-term (8 and 12 days) starved animals diminished only liver T4 to T3 conversion on day 8 and had no influence on liver T4 to rT3 conversion. 5'-deiodination of rT3 (to 3,3'-T2) in liver was gradually decreased by extracts of sera from animals starved during 2-12 days. Liver rT3-5-deiodination (to 3',5'-T2) was significantly impaired on day 4 and totally depressed by long-term starvation. In vitro T3 to 3,3'-T2 conversion in liver was markedly (59-103%) increased by ether extracts of sera from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term nor from long-term fasted rabbits but T4-5-deiodination (to rT3) was reduced by sera extracts of short-term fasted animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Syntenin is a scaffolding PDZ domain-containing protein with diverse biological activities, including organization of protein complexes in the plasma membrane, regulation of B-cell development, intracellular trafficking, synaptic transmission, and cancer metastasis. In the present study, we isolated and characterized the cDNA of the olive flounder Paralichthys olivaceus syntenin, designated PoSyntenin. The full-length CDS of PoSyntenin with 5′- and 3′-UTR sequences is 2618 bp long and consists of a 909 bp open reading frame preceded by a 161 bp 5′-UTR and followed by a 1551 bp 3′-UTR. The PoSyntenin cDNA encodes a polypeptide of 302 amino acids containing two PDZ domains, which shares 61–80% homology with those of other species, including humans. Expression of the PoSyntenin mRNA was detectable from 1 day post-hatching and constitutively in the brain, spleen, intestine, stomach, eye, liver, kidney, and gill of normal conditioned fish. Expression of the PoSyntenin mRNA was upregulated in the eye, liver, kidney, spleen, brain, gill, and intestine of flounder under hypoxia and was increased by treatment with the hypoxia-mimic CoCl2 (a HIF-1 inducer) in HINAE cells. Taken together, these results suggest that PoSyntenin is a hypoxia target gene that has a potential role in the hypoxia response mechanism of fish.  相似文献   

13.
The conversion of thyroxine to 3,5,3'-triiodothyronine (T3) is the first step in thyroid hormone action, and the Type I iodothyronine deiodinase supplies most of this extrathyroidal T3 in the rat. We found that the cDNA coding for this enzyme contains an in-frame UGA encoding the rare amino acid selenocysteine. Using site-directed mutagenesis, we have converted selenocysteine to cysteine and expressed the wild-type and cysteine mutant enzymes in JEG-3 cells by transient transfection. The kinetic properties of the transiently expressed wild-type enzyme are nearly identical to those reported for rat liver Type I deiodinase. Substitution of sulfur for selenium causes a 10-fold increase in the Km of the enzyme for the favored substrate 3,3',5'-triiodothyronine (rT3), a 100-fold decrease in the sensitivity of rT3 deiodination to competitive inhibition by gold and a 300-fold increase in the apparent Ki for uncompetitive inhibition by 6-n-propylthiouracil. These results demonstrate that selenium is responsible for the biochemical properties which characterize Type I iodothyronine monodeiodination.  相似文献   

14.
15.
16.
We measured low substrate (<1 nM) thyroid hormone (TH) deiodination activities in liver, muscle, intestine, and brain microsomes of Atlantic hagfish fasted for 2 weeks and found extremely low thyroxine (T(4)) outer-ring deiodination (T(4)ORD) and inner-ring deiodination (T(4)IRD) as well as 3,5,3'-triiodothyronine (T(3)) IRD activities. T(3)ORD, 3',5'-triiodothyronine (rT(3)) ORD and rT(3)IRD activities were undetectable. Hagfish deiodinating pathways resembled those of teleosts in requiring a thiol cofactor (dithiothreitol, DTT) and in their inhibition by established deiodinase inhibitors and by TH analogues. However, under optimal pH and DTT conditions intestinal T(4)ORD activity exceeded that of liver about 10-fold. This contrasts with the situation in teleosts but resembles that reported recently in larval and adult lampreys, suggesting the intestine as a primary site of TH deiodination in lower craniates.  相似文献   

17.
Stearoyl-CoA desaturase 1 (SCD1) is a rate limiting enzyme in the biosynthesis of monounsaturated fatty acids. It has been cloned from several species: Rattus norvegicus, Mus musculus, Homo Sapiens and Gallus gallus, but not from Anser anser. This study was conducted to isolate the SCD1 cDNA sequence and investigate the effect of overfeeding on SCD1 gene tissue expression in Landes goose. The complete cDNA is 3294 bp in length, with an ORF of 1.083 bp encoding a predicted polypeptide of 360 amino acids and 5′/3′-UTR of 74 and 2137 bp, respectively. Quantitative real time PCR (qPCR) was used to examine SCD1 expression in heart, liver, spleen, lung, kidney, gizzard, glandular stomach, intestine, crureus, pectoral muscle, hypothalamus and adipose tissue (abdominal fat) in both the overfed and control group. SCD1 mRNA was highly expressed in goose fatty liver, and the expression levels of SCD1 in liver and fat of overfeeding group were more than double that of the control group. During the overfeeding period, SCD1 expression in liver and adipose tissue reached the highest level after 70 days, but declined at 79 days. In the control group, after fasting 24 h, the expression level of SCD1 gene in tissues declined sharply. However, SCD1 gene expression in hypothalamus was unaffected. The results of this study provide a theoretical basis to study the relationship between SCD1 gene expression and the formation of fatty liver of Landes goose in response to overfeeding.  相似文献   

18.
Laboratory of genetics and physiology 2 (LGP2) is an actual detector and regulator during RNA viral infection in innate immunity. In this study, 5′-flanking region and all introns of LGP2 in grass carp (Ctenopharyngodon idella) were excavated. The genomic CiLGP2 (C. idella LGP2) was 8062 bp in length, with a 364 bp 5′-flanking region, twelve exons and eleven introns. Besides, the promoter activity of the upstream region before initiator codon was identified. By sequencing, six single nucleotide polymorphisms (SNPs) and one 20-bp insertion/deletion polymorphism were detected in CiLGP2. With a challenge experiment, the genotype and allele distributions of these seven polymorphisms were examined. Analytic result revealed only the − 1392 C/G, 494 A/T and 4403 C/T loci were significantly associated with the resistance/susceptibility to grass carp reovirus (GCRV) (P < 0.05). To further identify these correlations, another independent challenge test was performed. The analytic result based on the cumulative mortality demonstrated that the stock in − 1392 GG genotype was more susceptible to GCRV than that in CC genotype, while the stocks in 494 TT genotype and 4403 TT genotype were more resistant to GCRV than that in AA and CC genotype stocks, respectively (P < 0.05). Those significant SNPs might be potential gene markers for the future molecular selection of C. idella strains that are resistant to GCRV.  相似文献   

19.
《FEBS letters》2014,588(24):4665-4671
The mouse delta-like homolog 1 and type III iodothyronine deiodinase (Dlk1Dio3) imprinted domain contains three known paternally methylated differentially methylated regions (DMRs): intergenic DMR (IG-DMR), maternally expressed 3-DMR (Gtl2-DMR), and Dlk1-DMR. Here, we report the first maternally methylated DMR, CpG island 2 (CGI-2), is located approximately 800 bp downstream of miR-1188. CGI-2 is highly methylated in sperm and oocytes, de-methylated in pre-implantation embryos, and differentially re-methylated during post-implantation development. CGI-2, similarly to Gtl2-DMR and Dlk1-DMR, acquires differential methylation prior to embryonic day 7.5 (E7.5). Both H3K4me3 and H3K9me3 histone modifications are enriched at CGI-2. Furthermore, CCCTC-binding factor (CTCF) binds to both alleles of CGI-2 in vivo. These results contribute to the investigation of imprinting regulation in this domain.  相似文献   

20.
Escherichiacoli RecBCD is a bipolar DNA helicase possessing two motor subunits (RecB, a 3′-to-5′ translocase, and RecD, a 5′-to-3′ translocase) that is involved in the major pathway of recombinational repair. Previous studies indicated that the minimal kinetic mechanism needed to describe the ATP-dependent unwinding of blunt-ended DNA by RecBCD in vitro is a sequential n-step mechanism with two to three additional kinetic steps prior to initiating DNA unwinding. Since RecBCD can “melt out” ∼ 6 bp upon binding to the end of a blunt-ended DNA duplex in a Mg2+-dependent but ATP-independent reaction, we investigated the effects of noncomplementary single-stranded (ss) DNA tails [3′-(dT)6 and 5′-(dT)6 or 5′-(dT)10] on the mechanism of RecBCD and RecBC unwinding of duplex DNA using rapid kinetic methods. As with blunt-ended DNA, RecBCD unwinding of DNA possessing 3′-(dT)6 and 5′-(dT)6 noncomplementary ssDNA tails is well described by a sequential n-step mechanism with the same unwinding rate (mkU = 774 ± 16 bp s− 1) and kinetic step size (m = 3.3 ± 1.3 bp), yet two to three additional kinetic steps are still required prior to initiation of DNA unwinding (kC = 45 ± 2 s− 1). However, when the noncomplementary 5′ ssDNA tail is extended to 10 nt [5′-(dT)10 and 3′-(dT)6], the DNA end structure for which RecBCD displays optimal binding affinity, the additional kinetic steps are no longer needed, although a slightly slower unwinding rate (mkU = 538 ± 24 bp s− 1) is observed with a similar kinetic step size (m = 3.9 ± 0.5 bp). The RecBC DNA helicase (without the RecD subunit) does not initiate unwinding efficiently from a blunt DNA end. However, RecBC does initiate well from a DNA end possessing noncomplementary twin 5′-(dT)6 and 3′-(dT)6 tails, and unwinding can be described by a simple uniform n-step sequential scheme, without the need for the additional kC initiation steps, with a similar kinetic step size (m = 4.4 ± 1.7 bp) and unwinding rate (mkobs = 396 ± 15 bp s− 1). These results suggest that the additional kinetic steps with rate constant kC required for RecBCD to initiate unwinding of blunt-ended and twin (dT)6-tailed DNA reflect processes needed to engage the RecD motor with the 5′ ssDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号