首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Asia》2014,17(4):829-836
The bark beetle Ips acuminatus Gyllenhal (Coleoptera: Curculionidae: Scolytinae) has been recently reported as one of the most serious secondary pests of pine trees. Since the adult beetles chew the sapwood to create tunnels, they have developed effective drilling mouthparts enough to make galleries directly into the heartwood of the tree. The mouthparts of this bark beetle exhibit typical morphology of mycophagous coleopteran beetles and have those characteristics of chewing mouthparts. Both maxillary and labial palpi have the functions of directing the food to the mouth and holding it while the mandibles chew the food. Although this bark beetle did not have prothoracic mycangial cavities, yeast-like spores were concentrated at the invaginated surface of mouthparts where cuticular hairs are densely packed. In particular, the cuticular surface around the base segments of these palpi has sufficient spaces to accommodate microorganisms during the series of drilling or feeding processes. Therefore, this paper reports detailed observation of the cuticular structure of the mouthpart using the field emission scanning electron microscopy (FESEM) for the purpose of demonstrating its possible implication to act as external carriers of pathogenic microorganisms.  相似文献   

2.
Yuceer, C, Hsu, C.‐Y., Erbilgin, N and Klepzig, K.D. 2011. Ultrastructure of the mycangium of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae, Scolytinae): complex morphology for complex interactions. —Acta Zoologica (Stockholm) 92 : 216–224. The southern pine beetle (SPB) (Dendroctonus frontalis Zimmermann) is the most economically important pest of southern pine forests. Beetles carry fungal cells within specialised cuticular structures, called mycangia. Little is known about the mycangia ultrastructure or function. We used cryo‐fracturing and scanning electron microscopy to examine the ultrastructural features of SPB mycangia and surrounding tissues. Mycangia, one on each side of anterior portion of the prothorax, are terminated on the dorsal side at a ‘mycangial bridge’. This sclerotised mycangial bridge does not appear to provide a passage between the two mycangia, suggesting that each mycangium functions independently. Mycangia are surrounded by abundant tracheoles connecting the structures to the outside via openings within the prothorax. Previously unknown pits overlying the mycangial gland cells were also observed in both the inner wall and anterior fold of prothorax. We hypothesise that these openings and pits may play roles in determining which fungi enter, and grow within, the mycangium.  相似文献   

3.
This paper reviews the occurrence of external exoskeletal cavities in beetles and provides critical reassessment of their possible mycangial function. In most reported cases, the decision to attribute mycangial function to exoskeletal cavities was based solely on the combination of two factors: (i) observation of these cavities on beetle's body; and (ii) knowledge that this particular beetle species uses fungi as a food source. Such reasoning resulted in the assumption, occasionally premature and not supported by other evidence, that exoskeletal pits in the following families may function as mycangia: Rhysodidae, Ptiliidae, Staphylinidae, Hybosoridae, Scarabaeidae, Derodontidae, Ptinidae, Jacobsoniidae, Boganiidae, Cryptophagidae, Endomychidae, Erotylidae, Latridiidae, Nitidulidae, Phloeostichidae, Silvanidae, Sphindidae, Pyrochroidae, Anthribidae, Attelabidae and Curculionidae. We conclude that only two beetle families include species with adequately documented cases of external exoskeletal mycangia: (i) Curculionidae (some Scolytinae and Platypodinae); and (ii) the structurally complex mycangia of Attelabidae ( Euops females). One or more species of Sphindidae, Erotylidae, Silvanidae, and Latridiidae have likely functional mycangia. Exoskeletal pits with uncertain function are additionally reported from the following families: Cupedidae, Ommatidae, Lepiceridae, Carabidae, Histeridae, Hydraenidae, Leiodidae, Elmidae, Artematopodidae, Throscidae, Elateridae, Rhinorhipidae, Biphyllidae, Cerylonidae, Cyclaxyridae, Monotomidae, Mycetophagidae and Zopheridae. We also discuss the transport of fungal spores and conidia by waxy exudates or debris build up on beetle exoskeleton, as well as their passive attachment to the body.  相似文献   

4.
Happ GM  Happ CM  Barras SJ 《Tissue & cell》1971,3(2):295-308
The ultrastructure of the prothoracic mycangium of female Dendroctonus frontalis is examined. The mycangium consists of a cuticular invagination within which symbiotic fungi are cultured by the pine beetle and transported to new host trees. Secretions from two types of gland cells pass into the mycangial lumen. The plasma membrane of type-1 cells is invaginated to form an enclosed extracellular cavity. The secretory product passes into the cavity, then through fine cylindrical channels into an end apparatus and finally via an efferent cuticular ductule to the lumen of the mycangium. Secretion of the type-2 cells is released into a cavity just beneath the mycangial cuticle. The cuticle over this cavity is quite thin (1-2mu), consisting mostly of inner epicuticle riddled with irregular canals through which the secretion reaches the lumen. Beneath the patches of porous cuticle are ribs (up to 1Omu in thickness) which flank the cavities and presumably provide structural support for the porous secretory zones.  相似文献   

5.
Platypus koryoensis is a minute ambrosia beetle found in forests. It can cause significant economic damage to oak trees. Recently in Korea, it has been reported as a major pest of oak trees, because it causes sooty mold of oak by introducing the pathogenic fungus Raffaelea sp. In this paper, we demonstrate the fine structural aspects of the external body of the ambrosia beetle using field emission scanning electron microscopy, as a part of basic research into this pest so that strategies for its control might be developed. This beetle has a sensory system well developed to respond to both visual and chemical stimuli. Both sexes have a pair of faceted compound eyes and a pair of knobbed antennae, but simple eyes are absent. The mouthparts on its distinct snouts are effective devices for penetration and for boring holes. The mouthparts consist of the labrum, a pair of mandibles, a pair of maxillae and the labium. Both the maxillary and the labial palpi have the function of directing the food to the mouth and holding it while the mandibles chew the food. The distal ends of these palpi are flattened and have shovel‐like setae. The thorax has a particularly hard exoskeleton and hard elytra, including powerful muscles that operate both the wings and the legs. The legs are multi‐segmented and have a strong femur and tibia, including one pair of claws on the end of each tarsal segment. Characteristically, both male and female beetles have mycangial cavities for storing spores and other microorganisms, but only females have three pairs of large depressions on their dorsal thorax.  相似文献   

6.
Ambrosia beetles require their fungal symbiotic partner as their cultivated (farmed) food source in tree galleries. While most fungal-beetle partners do not kill the host trees they inhabit, since their introduction (invasion) into the United states around ~2002, the invasive beetle Xyleborus glabratus has vectored its mutualist partner (but plant pathogenic) fungus, Harringtonia lauricola, resulting in the deaths of over 300 million trees. Concerningly, indigenous beetles have been caught bearing H. lauricola. Here, we show colonization of the mycangia of the indigenous X. affinis ambrosia beetle by H. lauricola. Mycangial colonization occurred within 1 h of feeding, with similar levels seen for H. lauricola as found for the native X. affinis-R. arxii fungal partner. Fungal mycangial occupancy was stable over time and after removal of the fungal source, but showed rapid turnover when additional fungal cells were available. Microscopic visualization revealed two pre-oral mycangial pouches of ~100–200 × 25–50 μm/each, with narrow entry channels of 25–50 × 3–10 μm. Fungi within the mycangia underwent a dimorphic transition from filamentous/blastospore growth to yeast-like budding with alterations to membrane structures. These data identify the characteristics of ambrosia beetle mycangial colonization, implicating turnover as a mechanism for host switching of H. lauricola to other ambrosia beetle species.  相似文献   

7.
The southern pine beetle, a damaging pest of conifers, is intimately linked to three symbiotic fungi. Two fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are transported within specialized structures (mycangia) in the beetle exoskeleton and are mutualists of the beetle. A third fungus, Ophiostoma minus, is transported externally on the beetle exoskeleton (phoretically) and is an antagonist of the beetle. This study examined competitive interactions among these three fungi. The results of de Wit replacement series and primary and secondary resource capture assays with these fungi provide strong evidence for differential competition between the phoretic and mycangial fungi. O. minus was the most able to capture both uncolonized and colonized resources. Entomocorticium sp. A and C. ranaculosus, although equal to one another in competitive abilities, differed in their ability to compete with O. minus. Entomocorticium sp. A was able to maintain space free of O. minus to a much greater degree than was C. ranaculosus. The outcome of such competitive interactions may have significant impacts on the biology of this ecologically and economically important beetle.  相似文献   

8.
Ips acuminatus is a common group of bark beetles that infest and damage pine and spruce trees. As a part of research for controlling this insect pest, the adhesive organs on the tarsal appendages were examined using field emission scanning electron microscopy (FE-SEM) to reveal the microstructural characteristics of its biological attachment system. In addition, we also demonstrate their ability to act as external carriers of pathogens. This bark beetle has a characteristic attachment apparatus to move both smooth and rough surfaces. The claws are connected with a pretarsal segment, and their apical diverged hooks are developed to hold rough substrates; however, landing on smooth surfaces is achieved by means of three groups of hairy tarsal pads. The adhesive pads are basically composed of the flattened tip setae usually with a spatula-shaped endplate. Although this bark beetle did not have mycangial cavities, yeast-like spores were concentrated at the invaginated surface of legs where cuticular hairs are densely packed. In particular, the base stalk of the adhesive pad had a sufficient space to accept spores during the dynamic movement of tenent setae.  相似文献   

9.
Some phytophagous insects have been known to inoculate certain fungi on plant substrates. In many cases of such insect–fungi relationships it has been considered that fungi contribute to insects by decomposing lignin or polysaccharides, and that the insects feed on the decomposition products or fungi themselves. Females of the leaf-rolling weevil in the genus Euops (Attelabidae) store spores of symbiotic fungi in the mycangia and inoculate them on leaf rolls. To determine the effect of mycangial fungi on larval nutrition in E. lespedezae, the nutritional value was compared between leaves with and without mycangial fungi. Two Penicillium species were isolated from the mycangia. These mycangial fungi showed little effect on the decomposition of lignin and polysaccharides, and showed little effect on enhancement of soluble sugars within leaves. Thus, the mutualism between Euops and its mycangial fungi contrasts with the mainly nutritional mutualisms between wood-infesting insects (termites, bark/ambrosia beetles, and wood wasps) and lignin/polysaccharide-decomposing fungi.  相似文献   

10.
An ambrosia fungus is described from filamentous sporodochia adjacent to a wood–boring ambrosia beetle (Coleoptera: Curculionidae: Platypodinae) in mid-Cretaceous Burmese amber. Yeast-like propagules and hyphal fragments of Paleoambrosia entomophila gen. nov. et sp. nov. occur in glandular sac mycangia located inside the femur of the beetle. This is the first record of a fossil ambrosia fungus, showing that symbiotic associations between wood–boring insects and ectosymbiotic fungi date back some 100 million years ago. The present finding moves the origin of fungus-growing by insects from the Oligocene to the mid-Cretaceous and suggests a Gondwanan origin.  相似文献   

11.
In this study, we examined the genetic structures of the ambrosia fungus isolated from mycangia of the scolytine beetle, Xylosandrus germanus to understand their co‐evolutionary relationships. We analyzed datasets of three ambrosia fungus loci (18S rDNA, 28S rDNA, and the β‐tubulin gene) and a X. germanus locus dataset (cytochrome c oxidase subunit 1 (COI) mitochondrial DNA). The ambrosia fungi were separated into three cultural morphptypes, and their haplotypes were distinguished by phylogenetic analysis on the basis of the three loci. The COI phylogenetic analysis revealed three distinct genetic lineages (clades A, B, and C) within X. germanus, each of which corresponded to specific ambrosia fungus cultural morphptypes. The fungal symbiont phylogeny was not concordant with that of the beetle. Our results suggest that X. germanus may be unable to exchange its mycangial fungi, but extraordinary horizontal transmission of symbiotic fungi between the beetle's lineages occurred at least once during the evolutionary history of this symbiosis.  相似文献   

12.
Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle–fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect’s geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle’s flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle–fungus interaction is discussed.  相似文献   

13.
X‐ray microtomography has been applied successfully to obtain reliable microstructural information of many insect species. Nonetheless, the technique has not been widely applied to ambrosia beetles. The ambrosia beetle Euwallacea interjectus (Blandford) was first recorded as a vector of plant pathogenic fungus Ceratocystis ficicola Kajitani & Masuya, which has caused serious wilt disease in many fig orchards in Japan since 1999. Previous studies of E. interjectus have not described the mycangia (fungus‐storing organ) in detail. In this study, we non‐destructively examined the internal structure of an adult female of E. interjectus through computed microtomography scans. Paired mycangia were observed on typical computed tomography cross‐sections of the head. Each mycangium, ovoid in shape, was located in tissues just posterior to emarginated notch of eyes, adjacent to pharynx. Three dimensions (length × width × depth) of the mycangia were measured on stereography. We confirmed the absence of mycangia in the other body parts, such as elytra, prothorax and coxa of legs.  相似文献   

14.
Copulatory mechanisms and internal reproductive systems of male and female Plutella xylostella (L.) were investigated. Both male and female specimens exhibited characteristics typical of ditrysian Lepidoptera, with some peculiarities. Female structures appear to be relatively simple: the bursa copulatrix lacks cuticular signa within, the spermatheca lacks lagenar arms exhibited in some Lepidoptera, and colleterial glands have secretory system and reservoir combined. Male accessory gland ducts are joined distally, a condition that has not been described in other Lepidoptera. Genitalia of both sexes appear simple; females possess a posterior cuticular extension of abdominal sternites that houses the bursal duct and accomodates the needle-like aedeagus of a male during copulation. Despite the apparent simplicity, configuration of genitalia is highly specific in shape, angle, and size, which is likely to be important in maintaining reproductive isolation within the species. However, a population of P. xylostella from Australia showed some modification to both aedeagal and bursal structures. These variations suggest some important implications for considering species with worldwide distributions.  相似文献   

15.
Symbioses are increasingly seen as dynamic ecosystems with multiple associates and varying fidelity. Symbiont specificity remains elusive in one of the most ecologically successful and economically damaging eukaryotic symbioses: the ambrosia symbiosis of wood-boring beetles and fungi. We used multiplexed pyrosequencing of amplified internal transcribed spacer II (ITS2) ribosomal DNA (rDNA) libraries to document the communities of fungal associates and symbionts inside the mycangia (fungus transfer organ) of three ambrosia beetle species, Xyleborus affinis, Xyleborus ferrugineus and Xylosandrus crassiusculus. We processed 93 beetle samples from 5 locations across Florida, including reference communities. Fungal communities within mycangia included 14–20 fungus species, many more than reported by culture-based studies. We recovered previously known nutritional symbionts as members of the core community. We also detected several other fungal taxa that are equally frequent but whose function is unknown and many other transient species. The composition of fungal assemblages was significantly correlated with beetle species but not with locality. The type of mycangium appears to determine specificity: two Xyleborus with mandibular mycangia had multiple dominant associates with even abundances; Xylosandrus crassiusculus (mesonotal mycangium) communities were dominated by a single symbiont, Ambrosiella sp. Beetle mycangia also carried many fungi from the environment, including plant pathogens and endophytes. The ITS2 marker proved useful for ecological analyses, but the taxonomic resolution was limited to fungal genus or family, particularly in Ophiostomatales, which are under-represented in our amplicons as well as in public databases. This initial analysis of three beetle species suggests that each clade of ambrosia beetles and each mycangium type may support a functionally and taxonomically distinct symbiosis.  相似文献   

16.
Most living organisms use pheromones for inter-individual communication. In Drosophila melanogaster flies, several pheromones perceived either by contact/at a short distance (cuticular hydrocarbons, CHs), or at a longer distance (cis-vaccenyl acetate, cVA), affect courtship and mating behaviours. However, it has not previously been possible to precisely identify all potential pheromonal compounds and simultaneously monitor their variation on a time scale. To overcome this limitation, we combined Solid Phase Micro-Extraction with gas-chromatography coupled with mass-spectrometry. This allowed us (i) to identify 59 cuticular compounds, including 17 new CHs; (ii) to precisely quantify the amount of each compound that could be detected by another fly, and (iii) to measure the variation of these substances as a function of aging and mating. Sex-specific variation appeared with age, while mating affected cuticular compounds in both sexes with three possible patterns: variation was (i) reciprocal in the two sexes, suggesting a passive mechanical transfer during mating, (ii) parallel in both sexes, such as for cVA which strikingly appeared during mating, or (iii) unilateral, presumably as a result of sexual interaction. We provide a complete reassessment of all Drosophila CHs and suggest that the chemical conversation between male and female flies is far more complex than is generally accepted. We conclude that focusing on individual compounds will not provide a satisfactory understanding of the evolution and function of chemical communication in Drosophila.  相似文献   

17.
The research field of animal and plant symbioses is advancing from studying interactions between two species to whole communities of associates. High-throughput sequencing of microbial communities supports multiplexed sampling for statistically robust tests of hypotheses about symbiotic associations. We focus on ambrosia beetles, the increasingly damaging insects primarily associated with fungal symbionts, which have also been reported to support bacteria. To analyze the diversity, composition, and specificity of the beetles' prokaryotic associates, we combine global sampling, insect anatomy, 454 sequencing of bacterial rDNA, and multivariate statistics to analyze prokaryotic communities in ambrosia beetle mycangia, organs mostly known for transporting symbiotic fungi. We analyze six beetle species that represent three types of mycangia and include several globally distributed species, some with major economic importance (Dendroctonus frontalis, Xyleborus affinis, Xyleborus bispinatus-ferrugineus, Xyleborus glabratus, Xylosandrus crassiusculus, and Xylosandrus germanus). Ninety-six beetle mycangia yielded 1,546 bacterial phylotypes. Several phylotypes appear to form the core microbiome of the mycangium. Three Mycoplasma (originally thought restricted to vertebrates), two Burkholderiales, and two Pseudomonadales are repeatedly present worldwide in multiple beetle species. However, no bacterial phylotypes were universally present, suggesting that ambrosia beetles are not obligately dependent on bacterial symbionts. The composition of bacterial communities is structured by the host beetle species more than by the locality of origin, which suggests that more bacteria are vertically transmitted than acquired from the environment. The invasive X. glabratus and the globally distributed X. crassiusculus have unique sets of bacteria, different from species native to North America. We conclude that the mycangium hosts in multiple vertically transmitted bacteria such as Mycoplasma, most of which are likely facultative commensals or parasites.  相似文献   

18.
The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect–microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient‐poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle–fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle–fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine‐scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non‐natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non‐natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non‐natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle–fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.  相似文献   

19.
Abstract  Ambrosia beetles have an obligate relationship with the ambrosia fungi that they feed on. This requires that the beetles have means to transport those fungi when they colonise new hosts. Some ambrosia beetles have special structures called mycangia to transport fungi in. This paper describes the mycangia of the ambrosia beetle Austroplatypus incompertus and illustrates how the mycangical hairs are probably used by the beetle to acquire fungal spores for transport. The mycangia and probable method of fungal acquisition of this species are compared with those of other ambrosia beetles.  相似文献   

20.
Kin recognition, the ability to detect relatives, is important for cooperation, altruism and also inbreeding avoidance. A large body of research on kin recognition mechanisms exists for vertebrates and insects, while little is known for other arthropod taxa. In spiders, nepotism has been reported in social and solitary species. However, there are very few examples of kin discrimination in a mating context, one coming from the orb-weaver Argiope bruennichi. Owing to effective mating plugs and high rates of sexual cannibalism, both sexes of A. bruennichi are limited to a maximum of two copulations. Males surviving their first copulation can either re-mate with the current female (monopolizing paternity) or leave and search for another. Mating experiments have shown that males readily mate with sisters but are more likely to leave after one short copulation as compared with unrelated females, allowing them to search for another mate. Here, we ask whether the observed behaviour is based on chemical cues. We detected family-specific cuticular profiles that qualify as kin recognition cues. Moreover, correlations in the relative amounts of some of the detected substances between sexes within families indicate that kin recognition is likely based on subsets of cuticular substances, rather than entire profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号