首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice that have been subjected to cecal ligation and puncture (CLP) have an impaired ability to clear a subsequent Pseudomonas aeruginosa challenge compared with that of sham CLP controls. We hypothesized that this outcome is dependent upon a caspase-1 mechanism and tested this hypothesis by measuring caspase-1 after CLP and by measuring clearance of a bacterial challenge in caspase-1-deficient mice after CLP. Wild-type mice subjected to CLP had increased caspase-1 activity as well as increased IL-1β and increased IL-18 production in splenocytes stimulated with heat-killed Pseudomonas and had increased plasma concentrations of IL-1β and IL-18 and impaired clearance of a P. aeruginosa challenge compared with sham controls. Healthy, uninjured caspase-1(-\-) mice did not differ from wild-type mice in their ability to clear a Pseudomonas challenge. However, unlike wild-type mice, caspase-1(-/-) mice subjected to CLP had no impairment of bacterial clearance of the Pseudomonas challenge, suggesting that caspase-1 induction after CLP played a role in impairment of bacterial clearance. This was further substantiated by the use of a specific caspase-1 inhibitor, Ac-YVAD-CMK. Wild-type mice treated with Ac-YVAD-CMK (10 mg/kg s.c. twice daily, initiated at time of CLP) did not have impaired clearance of a Pseudomonas challenge compared with that of sham mice and had significantly improved bacterial clearance compared with that of untreated CLP mice. Increased caspase-1 expression and activity after CLP injury appears to contribute to diminished innate immune function.  相似文献   

2.
Studies have shown gender dimorphism in cell-mediated immune responses following haemorrhage, with depressed responses in young males and maintained or enhanced responses in proestrus females. However, it remains unknown whether or not the sexually dimorphic immune response to haemorrhage provides any protection against a subsequent in vivo polymicrobial septic challenge. To study this, male and proestrus female C3H/HeN mice were subjected to haemorrhage (35+/-5 mmHg for 90 min followed by fluid resuscitation) or sham operation. Twenty-four hours thereafter, all mice were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP) and survival was assessed over a 10 day period. Haemorrhage prior to CLP significantly increased mortality in males as compared to shams. In contrast, mortality in females following CLP was comparable between the sham and haemorrhage groups. Plasma levels of interleukin (IL-)6, tumour necrosis factor (TNF)-alpha and prostaglandin E(2)(PGE(2)) at 5 h after CLP were significantly increased in males subjected to prior haemorrhage. In contrast, plasma levels of IL-6 and TNF-alpha in females did not increase under such conditions. PGE(2)levels were comparable in males and females following CLP, however prior haemorrhage significantly reduced PGE(2)levels in females, whereas no change was observed in males. Liver and splenic expression of cyclooxygenase-2 protein paralleled the changes in plasma PGE(2). Female sex hormones, therefore, appear to play an important role not only in maintaining immune function following haemorrhage, but also provide a survival advantage against subsequent septic challenge.  相似文献   

3.
CD8 knockout mice depleted of natural killer (NK) cells by treatment with anti-asialoGM1 (CD8KO/alphaAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential sources of injury include bacterial dissemination, cecal ischemia, and translocation of bacterial toxins. We treated wild-type and CD8KO/alphaAsGM1 mice with imipenem after CLP to decrease bacterial dissemination. Additional mice were subjected to cecal ligation without puncture of the cecal wall or cecal ligation and removal of cecal contents. Imipenem treatment decreased bacterial counts by at least two orders of magnitude. However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and exhibited significant hypothermia, metabolic acidosis, and high plasma cytokine concentrations. Wild-type mice subjected to cecal ligation without puncture also died, despite very low bacterial counts in blood, but wild-type mice subjected to cecal ligation and washout of cecal contents survived. In CD8KO/alphaAsGM1 mice subjected to CLP, imipenem treatment increased survival from 50% to 100%. After cecal ligation without puncture, long-term survival was 80-90% in CD8KO/alphaAsGM1 mice. Hypothermia, metabolic acidosis, and cytokine production were attenuated in CD8KO/alphaAsGM1 mice compared with wild-type controls. These results indicate that bacterial dissemination is not a major source of injury in wild-type mice after CLP, but the presence of gut flora in the cecal lumen is required for induction of systemic inflammation after cecal injury. CD8KO/alphaAsGM1 mice are resistant to the systemic manifestations of cecal injury.  相似文献   

4.

Purpose

Unbalanced inflammatory response and lymphocyte apoptosis is associated with high mortality in septic patients. Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an anti-inflammatory and anti-apoptotic factor. Recently, DcR3 expression was found to be increased in septic patients. This study evaluated the therapeutic effect and mechanisms of DcR3 on cecal ligation and puncture (CLP)-induced sepsis in mice.

Methods

C57BL/6 mice were subjected to CLP-induced polymicrobial sepsis. DcR3 Fc was intravenously injected 30 min before and 6 h after CLP. Bacterial clearance, cytokine production, histology, lymphocyte apoptosis and survival were evaluated. Furthermore, we investigated the systemic effects of DcR3 in in vitro lymphocyte apoptosis regulation.

Results

Our results demonstrated that DcR3 protein treatments significantly improved survival in septic mice (p <0.05). Treatment with DcR3 protein significantly reduced the inflammatory response and decreased lymphocyte apoptosis in the thymus and spleen. Histopathological findings of the lung and liver showed milder impairment after DcR3 administration. In vitro experiments showed that DcR3 Fc inhibited Fas-FasL mediated lymphocyte apoptosis.

Conclusions

Treatment with the DcR3 protein protects mice from sepsis by suppressing the inflammatory response and lymphocyte apoptosis. DcR3 protein may be useful in treatment of sepsis.  相似文献   

5.
Sepsis syndrome is frequently complicated by the development of nosocomial infections, particularly Gram-negative pneumonia. Although TNF-alpha (TNF) has been shown to mediate many of the pathophysiologic events in sepsis, this cytokine is a critical component of innate immune response within the lung. Therefore, we hypothesized that the transient transgenic expression of TNF within the lung during the postseptic period could augment host immunity against nosocomial pathogens. To test this, mice underwent 26-gauge cecal ligation and puncture (CLP) as a model of abdominal sepsis, followed 24 h later by intratracheal (i.t.) administration of PSEUDOMONAS: aeruginosa. In animals undergoing sham surgery followed by bacterial challenge, PSEUDOMONAS: were nearly completely cleared from the lungs by 24 h. In contrast, mice undergoing CLP were unable to clear P. aeruginosa and rapidly developed bacteremia. Alveolar macrophages (AM) recovered from mice 24 h after CLP produced significantly less TNF ex vivo, as compared with AM from sham animals. Furthermore, the adenoviral mediated transgenic expression of TNF within the lung increased survival in CLP animals challenged with PSEUDOMONAS: from 25% in animals receiving control vector to 91% in animals administered recombinant murine TNF adenoviral vector. Improved survival in recombinant murine TNF adenoviral vector-treated mice was associated with enhanced lung bacterial clearance and proinflammatory cytokine expression, as well as enhanced AM phagocytic activity and cytokine expression when cultured ex vivo. These observations suggest that intrapulmonary immunostimulation with TNF can reverse sepsis-induced impairment in antibacterial host defense.  相似文献   

6.

Background

Although the role of autophagy in sepsis has been characterized in several organs, its role in the adaptive immune system remains to be ascertained. This study aimed to investigate the role of autophagy in sepsis-induced T cell apoptosis and immunosuppression, using knockout mice with T cell specific deletion of autophagy essential gene Atg7.

Methods and Results

Sepsis was induced in a cecal ligation and puncture (CLP) model, with T-cell-specific Atg7-knockout mice compared to control mice. Autophagic vacuoles examined by electron microscopy were decreased in the spleen after CLP. Autophagy proteins LC3-II and ATG7, and autophagosomes and autolysosomes stained by Cyto-ID Green and acridine orange were decreased in CD4+ and CD8+ splenocytes at 18 h and 24 h after CLP. This decrease in autophagy was associated with increased apoptosis of CD4+ and CD8+ after CLP. Moreover, mice lacking Atg7 in T lymphocytes showed an increase in sepsis-induced mortality, T cell apoptosis and loss of CD4+ and CD8+ T cells, in comparison to control mice. This was accompanied by suppressed cytokine production of Th1/Th2/Th17 by CD4+ T cells, reduced phagocytosis in macrophages and decreased bacterial clearance in the spleen after sepsis.

Conclusion

These results indicated that sepsis led to down-regulation of autophagy in T lymphocytes, which may result in enhanced apoptosis induction and decreased survival in sepsis. Autophagy may therefore play a protective role against sepsis-induced T lymphocyte apoptosis and immunosuppression.  相似文献   

7.
The effect of Saccharomyces boulardii on the immune system was evaluated, comparing germ-free Swiss/NIH mice monoassociated with the probiotic with germ-free mice. Saccharomyces boulardii colonized the gut of germ-free mice and survived the gastrointestinal conditions. An increase in sIgA production, both total and anti-S. boulardii, was observed in the intestinal contents of monoassociated mice when compared with germ-free controls. The number of Kupffer cells was significantly higher in monoassociated mice than in germ-free controls. In S. boulardii-monoassociated mice, clearance of Escherichia coli B41 was higher than in germ-free controls. TNF-alpha, IFN-gamma and IL-12 serum levels were higher at earlier time points in monoassociated mice when compared with germ-free mice. These results show that the yeast S. boulardii modulates the host immune responses. This effect may be of interest for improving the resistance to enteropathogenic bacterial infections.  相似文献   

8.
Enhancing endothelial barrier integrity for the treatment of acute lung injury (ALI) is an emerging novel therapeutic strategy. Our previous studies have demonstrated the essential role of FoxM1 in mediating endothelial regeneration and barrier repair following lipopolysaccharide-induced lung injury. However, it remains unclear whether FoxM1 expression is sufficient to promote endothelial repair in experimental models of sepsis. Here, employing the FoxM1 transgenic (FoxM1 Tg) mice, we showed that transgenic expression of FoxM1 promoted rapid recovery of endothelial barrier function and survival in a clinically relevant model of sepsis induced by cecal ligation and puncture (CLP). We observed lung vascular permeability was rapidly recovered and returned to levels similar to baseline at 48 h post-CLP challenge in FoxM1 Tg mice whereas it remained markedly elevated in WT mice. Lung edema and inflammation were resolved only in FoxM1 Tg mice at 24 h post-CLP. 5-bromo-2-deoxyuridine incorporation assay revealed a drastic induction of endothelial proliferation in FoxM1 Tg lungs at 24h post-CLP, correlating with early induction of expression of FoxM1 target genes essential for cell cycle progression. Additionally, deletion of FoxM1 in endothelial cells, employing the mouse model with endothelial cell-restricted disruption of FoxM1 (FoxM1 CKO) resulted in impaired endothelial repair following CLP challenge. Together, these data suggest FoxM1 expression in endothelial cells is necessary and sufficient to mediate endothelial repair and thereby promote survival following sepsis challenge.  相似文献   

9.
Secondary infection following septic insult represents a significant cause of morbidity and mortality in hospitalized patients. Sepsis induced immunosuppression is a major factor in the host’s susceptibility to nosocomial infections and Candida albicans accounts for a growing number of these. Given the importance of improving our understanding of the immune response to sepsis and the increasing rates of C. albicans infections, we sought to develop a murine model of double injury consisting of primary peritonitis, i.e., cecal ligation and puncture (CLP), followed by a secondary challenge of C. albicans. As observed in previous work, after primary injury the immune profile of the host changes over time. Therefore, while keeping the mortality rates from the respective individual injuries low, we altered the timing of the secondary injury between two post-CLP time points, day two and day four. Mice subjected to C. albicans infection following CLP have significantly different survival rates dependent upon timing of secondary injury. Animals challenged with C. albicans at two days post CLP had 91% mortality whereas animals challenged at four days had 47% mortality. This improvement in survival at four days was associated with restoration of innate cell populations and as evidenced by stimulated splenocytes, increases in certain inflammatory cytokines. In addition, we show that susceptibility to C. albicans infection following CLP is dependent upon the depth of immunosuppression. Although at four days post-CLP there is a partial reconstitution of the immune system, these animals remain more susceptible to infection compared to their single injury (C. albicans alone) counterparts. Collectively, these studies demonstrate that immunosuppression following initial septic insult changes over time. This novel, two hit model of CLP followed by Candida provides additional insight into the immune compromised state created by primary peritonitis, and thereby opens up another avenue of investigation into the causes and possible cures of an emerging clinical problem.  相似文献   

10.
Literature supports findings about a gender specific outcome following multiple trauma. Male sex hormones such as dihydrotestosterone (DHT) exert deleterious effects on the posttraumatic immune response whereas increased estradiol concentrations are correlated with improved outcome. Pretreatment with the 5α-reductase inhibitor finasteride resulted in an improved outcome following trauma-hemorrhage (TH) in mice. The present study tested the hypothesis that finasteride exerts beneficial effects on the posttraumatic immune response also in a combined setting of TH and sepsis when administered during the resuscitation process.

Material and Methods

Male C57BL/6N-mice were subjected to TH (blood pressure, 35 mm Hg, 60 min) followed by finasteride application and fluid resuscitation. Thereafter, finasteride was administered every 12 h. 24 h after TH, sepsis was induced by cecal ligation and puncture (CLP) or sham operation was performed. Plasma cytokines (MIP-1α, MIP-1β, TNF-α, MCP-1, IL-6), productive capacity by alveolar macrophages (AM) and systemic estradiol levels were determined 4 h thereafter. The expression of pro-inflammatory mediators in lung tissue was evaluated by PCR. Pulmonary infiltration of PMN was determined by immunohistochemical staining.

Results

Finasteride treatment resulted in a reduced posttraumatic cytokine secretion of AM as well as in a decreased concentration of MCP-1 and MIP-1β in lung tissue. Systemic estradiol levels were increased following finasteride treatment.

Conclusion

Finasteride mediates salutary effects on the pulmonary immune response using a therapeutical approach following TH–CLP in mice. Thus, finasteride might represent a relevant therapeutic substance following major trauma also in the clinical setting.  相似文献   

11.
Complement activation represents a crucial innate defense mechanism to invading microorganisms, but there is an eminent lack of understanding of the separate contribution of the different complement activation pathways to the host response during sepsis. We therefore investigated different innate host immune responses during cecal ligation and puncture (CLP)-induced sepsis in mice lacking either the alternative (fD(-/-)) or classical (C1q(-/-)) complement activation pathway. Both knockout mice strains showed a significantly reduced survival and increased organ dysfunction when compared with control mice. Surprisingly, fD(-/-) mice demonstrated a compensated bacterial clearance capacity as control mice at 6 h post CLP, whereas C1q(-/-) mice were already overwhelmed by bacterial growth at this time point. Interestingly, at 24 h after CLP, fD(-/-) mice failed to clear bacteria in a way comparable to control mice. However, both knockout mice strains showed compromised C3 cleavage during sepsis. Investigating potential causes for this discrepancy, we were able to demonstrate that despite normal bacterial clearance capacity early during the onset of sepsis, fD(-/-) mice displayed increased inflammatory cytokine generation and neutrophil recruitment into lungs and blood when compared with both control- and C1q(-/-) mice, indicating a potential loss of control over these immune responses. Further in vitro experiments revealed a strongly increased Nf-κB activation capacity in isolated neutrophils from fD(-/-) mice, supporting this hypothesis. Our results provide evidence for the new concept that the alternative complement activation pathway exerts a distinctly different contribution to the innate host response during sepsis when compared with the classical pathway.  相似文献   

12.
Gut-derived norepinephrine (NE) has been shown to play a critical role in producing hepatocellular dysfunction in early sepsis, but it is not known whether alpha2-adrenoceptor activation mediates this dysfunction. We infused normal male adult rats with NE, NE plus the specific alpha2-adrenergic antagonist rauwolscine (RW), or vehicle (normal saline) for 2 h. Hepatocellular function was determined by in vivo indocyanine green (ICG) clearance. An isolated perfused liver preparation was also used to assess hepatocellular function by in vitro ICG clearance; NE alone or with RW was added to the perfusate. Rats were subjected to sepsis by cecal ligation and puncture (CLP). At 1 h after CLP, RW was infused for 15 min. At 5 h after CLP, we measured hepatocellular function and serum tumor necrosis factor-alpha (TNF-alpha) levels. Intraportal NE infusion in normal rats produced hepatocellular dysfunction, which was prevented by RW and NE infusion. This is confirmed by findings with the isolated perfused liver preparation. RW administration in early sepsis maintained hepatocellular function and downregulated TNF-alpha production at 5 h after CLP. These results suggest that NE-induced hepatocellular dysfunction in early sepsis is mediated by alpha2-adrenoceptor activation, which appears to upregulate TNF-alpha production. Modulation of hepatic responsiveness to NE by alpha2-adrenergic antagonists should provide a novel approach for maintaining cell and organ functions during sepsis.  相似文献   

13.
Studies have shown that 17beta-estradiol has salutary effects on immune functions after trauma-hemorrhage (TH). It remains unknown, however, whether 17beta-estradiol has a similar effect in a double-hit model of TH and subsequent sepsis. It is also unknown if under those conditions the circulating immune cells accurately represent immunological responses occurring in fixed tissues, such as the spleen. To study this, pre-castrated mice were hormonally treated and then subjected to soft-tissue trauma (i.e. midline laporatomy), hemorrhagic shock (MAP 35+/-5mmHg for 90 min followed by resuscitation) and 24 h later sepsis was induced by cecal ligation and puncture (CLP). Splenic macrophages (SMphi) and peripheral blood mononuclear cells (PBMC) were isolated and cultured with LPS. 5alpha-Dihydrotestosterone-treated mice showed a depressed pro-inflammatory cytokine production after TH-sepsis in both SMphi and PBMC. In contrast, the 17beta-estradiol treated groups showed suppressed pro-inflammatory cytokine production in the PBMC population under those conditions. In summary, 17beta-estradiol was able to prevent immune dysfunction after TH and subsequent sepsis. However, the beneficial effects of 17beta-estradiol were limited to tissue-fixed Mphi, suggesting compartmentalization of the response. Thus, events occurring in the tissue-fixed cells are not necessarily reflected in the circulating PBMC population.  相似文献   

14.
Sepsis is a multifactorial, and often fatal, disorder typically characterized by widespread inflammation and immune activation with resultant endothelial activation. In the present study, we postulated that the adipokine adiponectin serves as a critical modulator of survival and endothelial activation in sepsis. To this aim, we evaluated both loss-of-function (adiponectin gene-deficient mice) and subsequent gain-of-function (recombinant adiponectin reconstitution) strategies in two well-established inflammatory models, cecal ligation perforation (CLP) and thioglyocollate-induced peritonitis. Adipoq(-/-) mice, subjected to CLP, exhibited a profound ( approximately 8-fold) reduction in survival compared with their wild-type Adipoq(+/+) littermates after 48 h. Furthermore, compared with wild-type controls, thioglycollate challenge resulted in a markedly greater influx of peritoneal neutrophils in Adipoq(-/-) mice accompanied by an excess production of key chemoattractant cytokines (IL-12p70, TNFalpha, MCP-1, and IL-6) and upregulation of aortic endothelial adhesion molecule VCAM-1 and ICAM-1 expressions. Importantly, all of these effects were blunted by recombinant total adiponectin administration given 3 days prior to thioglycollate challenge. The protective effects of adiponectin were ascribed largely to higher-order adiponectin oligomers, since administration of recombinant C39A trimeric adiponectin did not attenuate endothelial adhesion molecule expression in thioglycollate-challenged Adipoq(-/-) mice. These data suggest a critical role of adiponectin as a modulator of survival and endothelial inflammation in experimental sepsis and a potential mechanistic link between adiposity and increased sepsis.  相似文献   

15.
Among bacterial pathogens, Pseudomonas (P.) aeruginosa infection is the most sight threatening. The corneal innate immune responses are key mediators of the host’s defense to P. aeruginosa. Using a mouse model of Pseudomonas keratitis, we evaluated the protective effects of topical application of flagellin, a ligand for Toll-Like receptor 5 (TLR5), on the development of Pseudomonas keratitis and elucidated the underlying mechanisms. Topical application of purified flagellin 6 and 24 h prior to P. aeruginosa inoculation on injured mouse corneas significantly attenuated clinical symptoms of P. aeruginosa keratitis, decreased bacterial burden, and suppressed infection induced inflammation in the B6 mouse cornea. Topical application of flagellin on wounded cornea induced PMN infiltration and markedly upregulated cathelicidin-related antimicrobial peptide (CRAMP) expression. In PMN depleted mice, flagellin promoted bacterial clearance in the cornea compared to that of the PBS treated mice, but was unable to prevent corneal perforation and systemic bacterial dissemination and sepses. Deletion of CRAMP increased corneal susceptibility to P. aeruginosa and abolished flagellin-induced protection in B6 mice. Our findings illustrate the profound protective effect of flagellin on the cornea innate defense, a response that can be exploited for prophylactic purposes to prevent contact lens associated Pseudomonas keratitis.  相似文献   

16.

Background

Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis.

Methodology/Principal Findings

We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E.coli injection (IP E.coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1−/− animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1−/− mice after CLP. The survival advantage for TSP-1−/− animals persisted when IP E.coli injections were performed. TSP-1−/− BMMs had increased phagocytic capacity compared to WT.

Conclusions

TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition.  相似文献   

17.
Candida albicans was established in large numbers throughout the gut after one oral challenge in the germ-free and in the conventional mouse. Of the strains tested, only the germ-free ND 1 mouse appeared to be susceptible to infection, and this was confined to the stomach mucosa; lesions contained large numbers of hyphal and mycelial forms with blastospores. These forms were also seen in the gut of resistant germ-free ND 4 mice after challenge. Only budding yeast forms were seen in the gut contents from conventional animals. The concentration of sulfhydryl-containing compounds was decreased in the stomach contents from germ-free mice. The stomach tissue of conventional animals seemed to be more acidic than that of germ-free animals, and association of C. albicans with conventional mice neutralized some of this acidity. E(h) values of contents from the gut of unchallenged mice were usually higher in conventional than in germ-free animals; after challenge, the E(h) in both groups decreased. Some reciprocal effects of intestinal microorganisms and host are discussed in relation to intestinal candidiasis.  相似文献   

18.
Experimental sepsis can be induced in mice using the cecal ligation and puncture (CLP) method, which causes polymicrobial sepsis. Here, a protocol is provided to induce sepsis of varying severity in mice using the CLP technique. Autophagy is a fundamental tissue response to stress and pathogen invasion. Two current protocols to assess autophagy in vivo in the context of experimental sepsis are also presented here. (I) Transgenic mice expressing green fluorescence protein (GFP)-LC3 fusion protein are subjected to CLP. Localized enhancement of GFP signal (puncta), as assayed either by immunohistochemical or confocal assays, can be used to detect enhanced autophagosome formation and, thus, altered activation of the autophagy pathway. (II) Enhanced autophagic vacuole (autophagosome) formation per unit tissue area (as a marker of autophagy stimulation) can be quantified using electron microscopy. The study of autophagic responses to sepsis is a critical component of understanding the mechanisms by which tissues respond to infection. Research findings in this area may ultimately contribute towards understanding the pathogenesis of sepsis, which represents a major problem in critical care medicine.  相似文献   

19.
This study investigated the effect of dietary fish oil on systemic inflammation and hepatic injury in mice with polymicrobial sepsis. Male ICR mice were assigned to a control group (C, n=30) and a fish oil group (FO, n=30). Mice in the C group were fed a semi-purified diet with 10% soybean oil, and those in the FO group were fed a fish oil diet (2.5% fish oil+7.5% soybean oil; w/w). Three weeks later, sepsis was induced by cecal ligation and puncture (CLP), and mice were sacrificed at 0, 6 and 24 h after CLP, respectively. Results showed that compared with C group, the FO group had lower plasma levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and nitrite at 6 and 24 h after CLP. Also, peritoneal lavage fluid concentrations of TNF-α and prostaglandin (PG) E2 were significantly lower at 24 h in the FO than in the C group. The FO group had lower myeloperoxidase activities at 6 h after CLP in various organs. Plasma aminotransferase and alanine aminotransferase activities revealed significantly decreased in the FO group. The DNA-binding activity of peroxisome proliferators-activated receptor gamma (PPARγ) and mRNA expression of I kappaB alpha (IκBα) were up-regulated while nuclear factor (NF)-κB p65 DNA-binding activity, inducible nitric oxide synthase protein expression and the concentration of nitrotyrosine were significantly decreased in the FO group in liver after CLP. These results indicate that dietary fish oil administration may attenuate systemic inflammation and up-regulate hepatic PPARγ DNA-binding activity, which may consequently have ameliorated liver injury in these septic mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号