首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines.  相似文献   

3.
It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-gamma was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-gamma inhibitor GW9662 suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-gamma and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.  相似文献   

4.
LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria   总被引:8,自引:0,他引:8  
Adhesion of bacteria to vascular endothelial cells as well as mucosal cells and epithelial cells appears to be one of the initial steps in the process of bacterial infection, including infective endocarditis. We examined whether lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), a member of scavenger receptor family molecules with C-type lectin-like structure, can support adhesion of Gram-positive and Gram-negative bacteria. Chinese hamster ovary-K1 (CHO-K1) cells stably expressing LOX-1 can support binding of FITC-labeled Staphylococcus aureus and Escherichia coli, which was suppressed by poly(I) and an anti-LOX-1 mAb. Adhesion of these bacteria to LOX-1 does not require divalent cations or serum factors and can be supported under both static and nonstatic conditions. Cultured bovine aortic endothelial cells (BAEC) can also support adhesion of FITC-labeled S. aureus, which was similarly suppressed by poly(I) and an anti-LOX-1 mAb. In contrast, binding of FITC-labeled E. coli to BAEC was partially inhibited by the anti-LOX-1 mAb, and poly(I) did not block FITC-labeled E. coli adhesion to BAEC, but, rather, enhanced it under a static condition. TNF-alpha increased LOX-1-dependent adhesion of E. coli, but not that of S. aureus, suggesting that S. aureus adhesion to BAEC may require additional molecules, which cooperate with LOX-1 and suppressed by TNF-alpha. Taken together, LOX-1 can work as a cell surface receptor for Gram-positive and Gram-negative bacteria, such as S. aureus and E. coli, in a mechanism similar to that of class A scavenger receptors; however, other unknown molecules may also be involved in the adhesion of E. coli to BAEC, which is enhanced by poly(I).  相似文献   

5.
Oxidized low density lipoprotein (ox-LDL) has been suggested to affect endothelium-dependent vascular tone through a decreased biological activity of endothelium-derived nitric oxide (NO). Oxidative inactivation of NO is regarded as an important cause of its decreased biological activity, and in this context superoxide (O(2)) is known to inactivate NO in a chemical reaction during which peroxynitrite is formed. In this study we examined the effect of ox-LDL on the intracellular NO concentration in bovine aortic endothelial cells and whether this effect is influenced by ox-LDL binding to the endothelial receptor lectin-like ox-LDL receptor-1 (LOX-1) through the formation of reactive oxygen species and in particular of O(2). ox-LDL induced a significant dose-dependent decrease in intracellular NO concentration both in basal and stimulated conditions after less than 1 min of incubation with bovine aortic endothelial cells (p < 0.01). In the same experimental conditions ox-LDL also induced O(2) generation (p < 0.001). In the presence of radical scavengers and anti-LOX-1 monoclonal antibody, O(2) formation induced by ox-LDL was reduced (p < 0.001) with a contemporary rise in intracellular NO concentration (p < 0.001). ox-LDL did not significantly modify the ability of endothelial nitric oxide synthase to metabolize l-arginine to l-citrulline. The results of this study show that one of the pathophysiological consequences of ox-LDL binding to LOX-1 may be the inactivation of NO through an increased cellular production of O(2).  相似文献   

6.
Oxidized low-density lipoprotein (ox-LDL) leads to atherosclerosis via lectin-like oxidized lipoprotein receptor-1 (LOX-1), one of the major receptor for ox-LDL. Inhibition of the binding of ox-LDL to LOX-1 decreases the proinflammatory and atherosclerotic events. The aim of the present study was to investigate whether protamine, a polybasic nuclear protein, interferes the binding of ox-LDL to LOX-1. Using sandwich ELISA with newly generated antibody, we measured the blocking effect of protamine on the binding of ox-LDL to LOX-1. Protamine dose-dependently inhibited the binding of ox-LDL to LOX-1. DiI-labeled ox-LDL uptake assay in two types of cultured human endothelial cells was performed with fluorescence microplate reader. Activation of extracellular-signal-regulated kinase (ERK)1/2 by ox-LDL was analyzed by immunoblotting. We found that protamine suppressed uptake of ox-LDL in endothelial cells and inhibited ERK1/2 activation by ox-LDL. These results suggest that protamine may possess anti-atherogenic potential by inhibiting ox-LDL binding to LOX-1 through electrostatic interactions.  相似文献   

7.
Fluid shear stress and uptake of oxidized low-density lipoprotein (ox-LDL) into the vessel wall both contribute to atherosclerosis, but the relationship between shear stress and ox-LDL uptake is unclear. We examined the effects of flow, induced by orbital rotation of bEnd.3 brain endothelial cell cultures for 1 wk, on ox-LDL receptor (LOX-1) protein expression, ox-LDL uptake and ox-LDL toxicity. Orbitally rotated cultures showed no changes in LOX-1 protein expression, ox-LDL uptake or ox-LDL toxicity, compared to stationary cultures. Flow alone does not modify ox-LDL/LOX-1 signaling in bEnd.3 brain endothelial cells in vitro, suggesting that susceptibility of atheroprone vascular sites to lipid accumulation is not due solely to effects of altered flow on endothelium.  相似文献   

8.
Lectin-like oxidized LDL (ox-LDL) receptor-1 (LOX-1) is a type-II transmembrane protein that belongs to the C-type lectin family of molecules. LOX-1 acts as a cell surface endocytosis receptor and mediates the recognition and internalization of ox-LDL by vascular endothelial cells. Internalization of ox-LDL by LOX-1 results in a number of pro-atherogenic cellular responses implicated in the development and progression of atherosclerosis. In an effort to elucidate the functional domains responsible for the binding of ox-LDL to the receptor, a series of site-directed mutants were designed using computer modeling and X-ray crystallography to study the functional role of the hydrophobic tunnel present in the LOX-1 receptor. The isoleucine residue (I(149)) sitting at the gate of the channel was replaced by phenylalanine, tyrosine, or glutamic acid to occlude the channel opening and restrict the docking of ligands to test its functional role in the binding of ox-LDL. The synthesis, intracellular processing, and cellular distribution of all mutants were identical to those of wild type, whereas there was a marked decrease in the ability of the mutants to bind ox-LDL. These studies suggest that the central hydrophobic tunnel that extends through the entire LOX-1 molecule is a key functional domain of the receptor and is critical for the recognition of modified LDL.  相似文献   

9.
Advanced glycation end products (AGEs) are a class of complex heterogeneous compounds which accumulate with age and is known to be involved in the pathogenesis of several diseases from diabetes to atherosclerosis. AGEs serve as ligands for multiple receptors including scavenger receptor (SR-A), CD36, and SR-BIota. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in both atherosclerosis and is found to be an endothelial cell receptor for AGEs. To explore the binding characterization of AGEs to LOX-1, AGEs were prepared by three different reducing sugars (d-glucose, d-fructose, and d-ribose) and the biochemical characterization including, free amino groups, free amine content, fructosamine residues, carbonyl content, fluorescence, and absorbance were determined. The binding activity was determined by FITC labeled AGEs using Chinese hamster ovary-K1 cells stably transfected with human LOX-1 gene. The obtained AGEs showed significant differences in the extent of side chain modifications, carbonyl content, fluorescence, and absorption models. All of the AGEs showed specific and saturable binding to hLOX-1-CHO-K1 cells. Furthermore, dose-dependent binding processes were observed. However, the maximal cellular binding of AGEs differs between the sugars (glucose > ribose > fructose). In addition, oxidized low-density lipoprotein (ox-LDL) could significantly inhibit the binding of AGEs to LOX-1 with different inhibitory efficiency. LOX-1 serves as receptor for AGEs which may give some insight into the role of LOX-1 in the pathogenesis of diabetes and related disorders.  相似文献   

10.
Experimental studies have shown that oxidized low-density lipoprotein (ox-LDL) up-regulates its receptor LOX-1. Both ox-LDL and LOX-1 are expressed in atherosclerotic plaques. Native LDL concentrations are elevated in atherosclerosis, suggesting a reduction in LDL-receptors. We hypothesized that ox-LDL via LOX-1 could influence the expression of LDL-receptors. This study was designed to examine the interaction between ox-LDL, LOX-1, and LDL-receptors in human coronary artery endothelial cells (HCAECs). HCAECs were incubated with ox-LDL (10-80 microg/ml) for 3-24h. Ox-LDL decreased the expression of LDL-receptor in a concentration- and time-dependent fashion. The effects of ox-LDL were mediated by its endothelial receptor LOX-1, since pretreatment of HCAECs with a blocking antibody to LOX-1 (JTX92, 10 microg/ml) prevented the effect of ox-LDL on LDL-receptor expression. The role of LOX-1 was further confirmed by the use of an antisense to LOX-1 mRNA, which also blocked the effect of ox-LDL in LDL-receptor expression. In other experiments, ox-LDL as expected induced superoxide anion generation; and pretreatment of HCAECs with the anti-oxidants trolox and alpha-tocopherol (each 10 microM) inhibited the formation of superoxide anions as well as the down-regulation of LDL-receptor in response to ox-LDL. These studies provide the first evidence that ox-LDL via LOX-1 modulates LDL-receptor expression in HCAECs. The generation of free radicals elicited by ox-LDL may be a key step in this process.  相似文献   

11.
Lectin-like oxidized low-density lipoprotein receptor (LOX-1) is a scavenger receptor that binds oxidized low-density lipoprotein (OxLDL) and has a role in atherosclerosis development. The N-terminus intracellular region (cytoplasmic domain) of LOX-1 mediates receptor internalization and trafficking, potentially through intracellular protein interactions. Using affinity isolation, we identified 6 of the 8 components of the chaperonin-containing TCP-1 (CCT) complex bound to LOX-1 cytoplasmic domain, which we verified by coimmunoprecipitation and immunostaining in human umbilical vein endothelial cells. We found that the interaction between CCT and LOX-1 is direct and ATP-dependent and that OxLDL suppressed this interaction. Understanding the association between LOX-1 and the CCT complex may facilitate the design of novel therapies for cardiovascular disease.  相似文献   

12.
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor responsible for ox-LDL recognition, binding and internalization, which is up-regulated during atherogenesis. Its activation triggers endothelium dysfunction and induces inflammation. A soluble form of LOX-1 has been identified in the human blood and its presence considered a biomarker of cardiovascular diseases. We recently showed that cholesterol-lowering drugs inhibit ox-LDL binding and internalization, rescuing the ox-LDL induced apoptotic phenotype in primary endothelial cells. Here we have investigated the molecular bases of human LOX-1 shedding by metalloproteinases and the role of cell membrane cholesterol on the regulation of this event by modulating its level with MβCD and statins. We report that membrane cholesterol affects the release of different forms of LOX-1 in cells transiently and stably expressing human LOX-1 and in a human endothelial cell line (EA.hy926). In particular, our data show that i) cholesterol depletion triggers the release of LOX-1 in exosomes as a full-length transmembrane isoform and as a truncated ectodomain soluble fragment (sLOX-1); ii) endothelial cells secrete a soluble metalloproteinase which induces LOX-1 ectodomain shedding and iii) long term statins treatment enhances sLOX-1 proteolytic shedding.  相似文献   

13.
Inhibition of LOX-1 by statins may relate to upregulation of eNOS.   总被引:12,自引:0,他引:12  
LOX-1, a receptor for oxidized low-density lipoprotein (ox-LDL), plays a critical role in endothelial dysfunction and atherosclerosis; both of these conditions are associated with diminished expression of constitutive endothelial nitric oxide synthase (eNOS). Recent studies show that HMG CoA reductase inhibitors (statins) exert cardioprotective effect. We examined the role of LOX-1 in eNOS expression and modulation of this relationship by two different statins, simvastatin and atorvastatin in human coronary artery endothelial cells (HCAECs). Ox-LDL (40 microg/ml) upregulated the expression of LOX-1; simultaneously, there was a reduction in eNOS expression. Pretreatment of HCAECs with simvastatin or atorvastatin (1 and 10 microM) reduced ox-LDL-induced upregulation of LOX-1 and downregulation of eNOS (both P < 0.05). High concentration of statins (10 microM) was more potent than the low concentration (1 microM) (P < 0.05). Both statins also attenuated ox-LDL-mediated activation of MAP kinase. These observations indicate that statins attenuate the effect of ox-LDL on eNOS expression. Inhibitory effect on LOX-1 and subsequently MAP kinase activity provides a potential mechanism of beneficial effects of statins beyond lowering cholesterol.  相似文献   

14.
Activation-dependent surface expression of LOX-1 in human platelets   总被引:13,自引:0,他引:13  
Lectin-like oxidized LDL receptor-1 (LOX-1) was initially identified as an oxidized LDL receptor in aortic endothelial cells. Here we identified LOX-1 mRNA and protein in human platelets in addition to recent findings on the expression in macrophages and smooth muscle cells. The presence of LOX-1 was further confirmed in the megakaryocytic cell lines. Flow cytometric analyses revealed that LOX-1 was exposed on the surface of platelets in an activation-dependent manner. Consistently, the activation-dependent binding of OxLDL to platelets was mostly inhibited by anti-LOX-1 antibody. Immunohistochemistry of the atherosclerotic plaque from a patient with unstable angina pectoris (UAP) revealed accumulation of LOX-1 protein at the site of thrombus. As LOX-1 recognizes and binds activated platelets, exposure of LOX-1 on activated platelets surface might assist thrombosis formation.  相似文献   

15.
The development of atherosclerosis is caused by the accumulation of lipid, inflammatory cytokine production, and the large amount of inflammatory cells in the arterial wall. It is now established that the presence of oxidized low-density lipoproteins (ox-LDL) has an important role in the pathogenesis of the disease. There are many scavenger receptors for ox-LDL, among which LOX-1 seems to be important for the induction of endothelial dysfunction and the other subsequent events that lead to the formation of atheromatous plaque. Our findings indicate the presence of a regulatory role induced by the presence of ox-LDL on LOX-1 through the amplification of IL-6 synthesis. This mechanism contributes to the upregulation of the ORL-1 gene expression in presence of risk factors. Many authors have shown the possibility to use LOX-1 as a good marker for the diagnosis and prognosis of coronary artery disease because it is easy to measure and more sensitive than other markers commonly used in the routine of laboratory medicine.  相似文献   

16.
We identified increased expression and redistribution of the intracellular protein 60-kDa human heat shock protein (hHSP60) (HSPD1) to the cell surface in human endothelial cells subjected to classical atherosclerosis risk factors and subsequent immunologic cross-reactivity against this highly conserved molecule, as key events occurring early in the process of atherosclerosis. The present study aimed at investigating the role of infectious pathogens as stress factors for vascular endothelial cells and, as such, contributors to early atherosclerotic lesion formation. Using primary donor-matched arterial and venous human endothelial cells, we show that infection with Chlamydia pneumoniae leads to marked upregulation and surface expression of hHSP60 and adhesion molecules. Moreover, we provide evidence for an increased susceptibility of arterial endothelial cells for redistribution of hHSP60 to the cellular membrane in response to C. pneumoniae infection as compared to autologous venous endothelial cells. We also show that oxidative stress has a central role to play in endothelial cell activation in response to chlamydial infection. These data provide evidence for a role of C. pneumoniae as a potent primary endothelial stressor for arterial endothelial cells leading to enrichment of hHSP60 on the cellular membrane and, as such, a potential initiator of atherosclerosis.  相似文献   

17.
Statins are largely used in clinics in the treatment of patients with cardiovascular diseases for their effect on lowering circulating cholesterol. Lectin-like oxidized low-density lipoprotein (LOX-1), the primary receptor for ox-LDL, plays a central role in the pathogenesis of atherosclerosis and cardiovascular disorders. We have recently shown that chronic exposure of cells to lovastatin disrupts LOX-1 receptor cluster distribution in plasma membranes, leading to a marked loss of LOX-1 function. Here we investigated the molecular mechanism of statin-mediated LOX-1 inhibition and we demonstrate that all tested statins are able to displace the binding of fluorescent ox-LDL to LOX-1 by a direct interaction with LOX-1 receptors in a cell-based binding assay. Molecular docking simulations confirm the interaction and indicate that statins completely fill the hydrophobic tunnel that crosses the C-type lectin-like (CTLD) recognition domain of LOX-1. Classical molecular dynamics simulation technique applied to the LOX-1 CTLD, considered in the entire receptor structure with or without a statin ligand inside the tunnel, indicates that the presence of a ligand largely increases the dimer stability. Electrophoretic separation and western blot confirm that different statins binding stabilize the dimer assembly of LOX-1 receptors in vivo. The simulative and experimental results allow us to propose a CTLD clamp motion, which enables the receptor-substrate coupling. These findings reveal a novel and significant functional effect of statins.  相似文献   

18.
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the l-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors.  相似文献   

19.
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) is an endothelial scavenger receptor that is important for the uptake of OxLDL (oxidized low-density lipoprotein) and contributes to the pathogenesis of atherosclerosis. However, the precise structural motifs of OxLDL that are recognized by LOX-1 are unknown. In the present study, we have identified products of lipid peroxidation of OxLDL that serve as ligands for LOX-1. We used CHO (Chinese-hamster ovary) cells that stably express LOX-1 to evaluate the ability of BSA modified by lipid peroxidation to compete with AcLDL (acetylated low-density lipoprotein). We found that HNE (4-hydroxy-2-nonenal)-modified proteins most potently inhibited the uptake of AcLDL. On the basis of the findings that HNE-modified BSA and oxidation of LDL resulted in the formation of HNE-histidine Michael adducts, we examined whether the HNE-histidine adducts could serve as ligands for LOX-1. The authentic HNE-histidine adduct inhibited the uptake of AcLDL in a dose-dependent manner. Furthermore, we found the interaction of LOX-1 with the HNE-histidine adduct to have a dissociation constant of 1.22×10(-8) M using a surface plasmon resonance assay. Finally, we showed that the HNE-histidine adduct stimulated the formation of reactive oxygen species and activated extracellular-signal-regulated kinase 1/2 and NF-κB (nuclear factor κB) in HAECs (human aortic endothelial cells); these signals initiate endothelial dysfunction and lead to atherosclerosis. The present study provides intriguing insights into the molecular details of LOX-1 recognition of OxLDL.  相似文献   

20.
Endothelial scavenger receptors   总被引:5,自引:0,他引:5  
In the past few decades, cDNAs for endothelial scavenger receptors that bind to negatively charged molecules, particularly acetylated low density lipoproteins (Ac-LDL), have been cloned by expression cloning using modified LDL as ligands. A prototypic members of endothelial scavenger receptor family, namely, scavenger receptor class B type I (SR-BI) has been characterized as a high density lipoprotein (HDL) receptor. Another prototypic member, CD36, has been determined as a multiple ligand receptor because it binds to oxidized LDLs (Ox-LDL), trombospondin, erythrocytes infected with Plasmodium falciparum, long-chain fatty acids, and Gram-negative and Gram-positive bacteria. Lectin-like oxidized LDL receptor-1 (LOX-1) has been discovered as the principal receptor that mediates the action of Ox-LDL in the vascular walls. Recently, the structure of oxidized phospholipids, originally found in Ox-LDL, and its molecular mechanism of action on endothelial cells were determined. Further, the use of genetically manipulated rodent models and the recent forward genetic screening technique revealed the physiological and pathological functions of these endothelial scavenger receptors in innate immunity and infection. In this review, the structure and function of these multiligand scavenger receptors of endothelial cells have been described mainly in relation with lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号