首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most nests of brood-caring insects are colonized by a rich community of mite species. Since these nests are ephemeral and scattered in space, phoresy is the principal mode of dispersal in mites specializing on insect nests. Often the mites will arrive on the nest-founding insect, reproduce in the nest and their offspring will disperse on the insect's offspring. A literature review shows that mites reproducing in the underground brood chambers of burying beetles use alternative routes for dispersal. For example, the phoretic instars of Poecilochirus spp. (Mesostigmata: Parasitidae) disperse early by attaching to the parent beetles. Outside the brood chamber, the mites switch host at carcasses and pheromone-emitting male beetles, where juvenile and mature burying beetles of several species congregate. Because they preferably switch to beetles that are reproductively active and use all species of burying beetles within their ranges, they have a good chance of arriving in a new brood chamber. Other mite associates of burying beetles (Alliphis necrophilus and Uropodina) disperse from the brood chamber on the beetle offspring. We suggest that these mites forgo the possible time gain of dispersing early on the parent beetles because their mode of attachment precludes host switching. Their phoretic instars, once attached, have to stay on their host and so only dispersing on the beetle offspring guarantees that they are present on reproducing burying beetles of the next season. The mites associated with burying beetles providean example of multiple solutions to one life history problem – how to find a new brood chamber for reproduction. Mites that have mobile phoretic instars disperse on the parent beetles and try to arrive in the next brood chamber by host switching. They are independent of the generation cycle of a single host and several generations of mites per host generation are possible. Mites that are constrained by their mode of attachment disperse on the beetle offspring and wait until their host becomes mature and reproduces. By doing this they synchronize their generation time with the generation time of their host species. Exp Appl Acarol 22: 621–631 © 1998 Kluwer Academic Publishers  相似文献   

2.
The relationship between the mite Poecilochirus davydovae Hyatt and its burying beetle carrier ( Nicrophorus vespilloides ) was investigated. Beetles experimentally stripped of deuteronymphs of Poecilochirus had larger apparent clutch sizes than beetles carrying mites. Furthermore, apparent clutch sizes were not affected by the presence or absence of carrion flies (Diptera: Calliphoridae). These results support the hypothesis that P. davydovae is a specialist predator feeding on the eggs of N. vespiloides.  相似文献   

3.
Individual variation in two species of host plants (thistle,Cirsium kamtschaticum, and blue cohosh,Caulophyllum robustum) of the herbivorous ladybird beetleEpilachna pustulosa was examined under laboratory conditions for their acceptability to adult beetles as a food resource, for adult preference and for larval performance. When clones of these plants were subjected to non-choice tests using posthibernating female beetles, there was found to be significant intraspecific variation among clones in terms of their acceptability, but interspecific variation was not detected. Significant intraspecific as well as interspecific variation were frequently detected in the two host plants when clones of these plants were subjected to choice tests using posthibernating female beetles; the magnitude of interspecific plant variation for beetle preference is not necessarily larger than that of intraspecific plant variation. Individual variation across plant species with respect to beetle larval performance was also significant. A positive correlation between adult preference and larval performance is suggested across the two taxonomically remote host plant species, thistle and blue cohosh, although this needs further investigation.  相似文献   

4.
Hayes CN  Winsor JA  Stephenson AG 《Oecologia》2004,140(4):601-608
In a series of field experiments Diabrotica beetle herbivory was found to influence the magnitude of inbreeding depression in Cucurbita pepo ssp. texana, an annual monoecious vine. Beetles damage flowers and fruits and chew dime-sized holes in leaf tissue between major veins. Inbred plants were found to be more likely to be damaged by beetles and to have more leaves damaged per plant than outcrossed plants. A positive linear association was found between the coefficient of inbreeding and the magnitude of leaf damage, whereas a negative association was found between coefficient of inbreeding and several male and female fitness traits. When pesticides were used to control beetle herbivory, the interaction between coefficient of inbreeding and pesticide treatment was significant for fruit production and marginally significant for pollen quantity per anther. Therefore, the magnitude of inbreeding depression in C. pepo ssp . texana varies depending on the severity of beetle herbivory.  相似文献   

5.
Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X 2 = 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X 2 = 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X 2 = 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.  相似文献   

6.
Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae) feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3rd instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood chamber. The transmission of the dung beetle microbiome highlights the maintenance and likely importance of this newly-characterized bacterial community.  相似文献   

7.
The flowers ofPavonia cancellata, a creeping ruderal half-shrub of northeastern Brazil, open synchronously at 6:00 h with all anthers already dehisced. The oligolectic beePtilothrix plumata was the most effective pollinator. During 90—180 min, female bees make up to 40 brief pollen collection trips to provision their brood cells. The pollen of about 40 flowers ofP. cancellata is needed to feed one bee larva. The most frequent flower visitors, however, are the specialized curculionid beetlesPristimerus calcaratus, which do not crosspollinate the flowers. They perforate the epidermis with their mouthparts, provoking dehydration, and then actively close the loose petals with their legs. Two hours after opening, half of the flowers had already been closed by the beetles. We interpret the fast, uninterrupted pollen foraging ofPtilothrix plumata bees as a strategy adapted to synchronous pollen presentation ofPavonia and to competition withPristimerus calcaratus: the female bees have to provision their brood cells before the beetles succeed in closing the flowers.  相似文献   

8.
Sexual transmission is a widespread means of infection, but apart from those in humans, the ecology of sexually transmitted organisms is not well known. In this study, we present an ecological study of a sexually transmitted mite, Parobia husbandi Seeman and Nahrung (Acari: Podapolipidae), that lives beneath the elytra of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae). In each of 2 yr, prevalence of mites on beetles began each spring at about 10-20% but gradually increased to 80-100% by late summer. Overlap of adult beetle generations at this time (i.e., the parental generation mating with the F1 generation) is essential for the persistence of these mites. Mites exhibited temporal change in their spatial distribution on beetles; these changes were probably a response to beetle activity (e.g., emergence from diapause) and the need for dispersal from parental to F1 generation beetles. Prevalence and mean intensity of mites was higher on female beetles compared with male beetles. Female bias of sexually transmitted infection has been predicted in animals but hitherto observed only in primates. We speculate that variable male mate-finding success is the cause of these sex-based differences of mite infections, and that female bias in sexually transmitted disease (STD) infection will be widespread in the animal kingdom.  相似文献   

9.
The ecology of sexually-transmitted diseases (STDs) is topical in scientific research, and their demography and epidemiology differ from those of classical pathogens and parasites. Transmission of STDs is generally density-independent, occurs via the “fittest” individuals in a population (or, at least, those that achieve the most matings), and reflects differential mating success. STDs can therefore have a major influence on the evolution of host mating systems. We studied the epidemiology of a recently described STD of a chrysomelid beetle in applied and theoretical contexts, exploring the virulence, intensity and prevalence of infection, and using our results to test ecological predictions. Chrysophtharta cloelia is infected with a sexually-transmitted mite (the STD), Parobia captivus. Infection rate over three beetle generations (7 months) was determined and the STD’s effects on fertility, fecundity, longevity, mating success and overwintering survival was measured. Throughout the season around 40% of beetles were infected, with approximately one quarter of such hosts carrying infective life stages of the STD at any one time. Infection by P. captivus significantly decreased overwintering survival, but did not impact on other fitness parameters measured, including mate acceptance. However, more female beetles were infected than male beetles, while within both sexes larger beetles were more likely to be infected. Our results concur with theoretical predictions that STDs may be selected for low virulence and low detectability, while the observation of female bias in infection supports hypotheses regarding variable mating success and mating skews, which we discuss.  相似文献   

10.
Very little data exists concerning the number of reproductive cycles performed by individual Varroa mites. To understand the population dynamics of the Varroa mite it is necessary to know the number of fertile female offspring each Varroa female produces during her lifetime. The lifetime reproduction capacity of the mite consists of the mean number of fertile female offspring produced during each reproductive cycle multiplied by the mean number of cell passages. This paper describes an experimental design to estimate the number of reproductive cycles where mites are transferred to new mite-free colonies for reproduction in sealed brood cells. The data presented suggests that the mean number of reproductive cycles performed by the individual female mite is larger than previously accepted. Under optimal conditions, the mean number of reproductive cycles by Varroa females is probably greater than 1.5 but less than 2. Furthermore, the results show that the reproductive success of Varroa females going into cells to reproduce is not influenced by previous brood cycles.  相似文献   

11.
When investigating insecticide resistance of pest insects, for example, the pollen beetle Meligethes aeneus, it is relevant to differentiate toxicological and molecular genetic data between male and female specimens. A molecular sex determination method would allow resistance testing to be run without prior sorting of the samples. A one-step quantitative RT-PCR method for quantification of the yolk protein vitellogenin expression in the pollen beetle was established. The expression level of vitellogenin relative to tubulin was determined. Pollen beetles were tested at different time points during their development to determine if vitellogenin is a reliable molecular marker for detection of sexually mature females. The differentiation between females and males by relative expression of vitellogenin to tubulin is conditional regarding the life cycle. Sexually mature females and males could easily be distinguished, whereas immature specimens could not be seperated. Vitellogenin expression is a successful marker for identification of sexually mature pollen beetles. Females from the spring populations showed vitellogenin expression when the temperature was above 10.2°C. Further, detailed observations of vitellogenin throughout the spring indicated a strong relationship between daily temperatures and vitellogenin expression, which is an indicator of oviposition ability.  相似文献   

12.
Taps were recorded from 46 male and 30 female deathwatch beetles, Xestobium rufovillosum.Beetles tap by striking the frons of the head on the substrate 4–11 times, at a frequency of about 11 Hz. There were no significant differences between the sexes in the number of strikes per tap, or in the frequency of the strikes, although there was significant variation between individuals of both sexes in both of these parameters. Males usually initiate a sequence of taps, to which females reply. Females responded more readily to male beetle taps containing high strike numbers. Use of an artificial tapper showed that females responded most to taps containing at least six strikes. Females did not discriminate between male beetle taps on the basis of strike frequency, although at abnormally high (20-Hz) or low (4-Hz) frequencies produced by the artificial tapper, females were less likely to respond. Male beetles located the source of taps from the artificial tapper and did this more readily with taps of a high strike number. It is not clear why some males produce taps with fewer than six strikes, as these are unlikely to elicit a female response, and so should be the subject of adverse sexual selection.  相似文献   

13.
Adults of two sympatric populations of the parasitid mite Poecilochirus carabi G. & R. Canestrini, one preferring Nicrophorus vespillo (Linnaeus) as carrier beetle species and the other N. vespilloides Herbst, could be separated by differences in the form of the structures associated with the male genital orifice and the size of the female endogynum. Adults and deuteronymphs of the two populations also differed in the size of idiosomal shields and dorsal setae. On the basis of these findings, plus data from a literature review and an examination of type-material, the preference type choosing N. vespilloides was identified as P. carabi (sensu stricto) and that preferring N. vespillo as P. necrophori Vitzthum, a species previously synonymised with P. carabi.  相似文献   

14.
The dung beetle, Scarabaeus catenatus, shows not only the rolling but also the tunneling tactic for nest building with bisexual cooperation. Sex roles, however, differed between the tactics. In rolling, the male took the initiative like that of ball-roller species: he rolled a dung ball away and buried it. In tunneling, in contrast, the male usually had a secondary role like that of tunnelers: he was less active in burrow excavation and provisioning. Regardless of the tactics, male participation did not increase female reproductive output measured by the number or size of brood balls in the field, but seemed to function as mate guarding against conspecific males. This suggests that, in both tactics, the male S. catenatus invests primarily in mating effort compared with paternal effort. The relative importance of mating effort in male participation seems to hold true in other dung beetles, irrespective of whether they are ball-roller or tunneler species. In addition, the male mating strategy of S. catenatus is compared with that of other ball-rollers.  相似文献   

15.
In a previous field-trapping study of the oriental beetle, Exomala orientalis (Waterhouse), by using synthetic sex pheromone on golf course fairways, numerous males were observed and trapped during the hours of peak mating activity. However, very few beetles were observed in the same areas when synthetic pheromone was absent. To investigate the hypothesis that mating in nature occurs cryptically within vegetation at the soil surface, laboratory studies on female emergence and pheromone release, male emergence and mate-locating, and female and male mating behaviors were conducted. Mate acquisition and copulation occurred on the soil surface near the female emergence site, with both sexes engaging in pheromone-mediated behaviors after having emerged from the soil. A highly stereotyped female pheromone release, or calling, behavior was observed, consisting of insertion of the female's head into the soil and elevation of the tip of her abdomen into the air. Bioassays conducted in a wind tunnel that simulated a turf fairway environment showed that walking and flying were both important in the upwind response of males to females. Mating and copulation occurred without an obvious complex courtship, but observations of postmating behaviors suggested that mate guarding occurs.  相似文献   

16.
The mountain pine beetle Dendroctonus ponderosae Hopkins is a major native pest of Pinus Linnaeus (Pinaceae) in western North America. Host colonization by the mountain pine beetle is associated with an obligatory dispersal phase, during which beetles fly in search of a suitable host. Mountain pine beetles use stored energy from feeding in the natal habitat to power flight before host colonization and brood production. Lipids fuel mountain pine beetle flight, although it is not known whether other energy sources are also used during flight. In the present study, we compare the level of energy substrates, proteins, carbohydrates and lipids of individual mountain pine beetles flown on flight mills with unflown control beetles. We use a colorimetric method to measure the entire metabolite content of each individual beetle. The present study reveals that mountain pine beetles are composed of more protein and lipid than carbohydrate. Both female and male mountain pine beetles use lipids and carbohydrates as energy sources during flight. There is variation between sexes, however, in the energy substrates used for flight. Male mountain pine beetles use protein, in addition to lipids and carbohydrates, to fuel flight, whereas protein content is not different between flown and control females.  相似文献   

17.
18.
A flesh burrowing parasitic isopod, Ichthyoxenus fushanensis, was found infecting the body cavity of a freshwater fish, Varicorhinus bacbatulus, in pairs. The marked sexual size dimorphism, with much larger females than males, and the presence of penes vestige on mature females suggest a protandrous sex change in I. fushanensis. Here we investigate the question of why selection favors protandrous sex change for I. fushanensis, by analyzing the interactions among clutch size, female size, male size, and their host size. The number of manca, the first free-living juvenile stage released, per brood was closely related to the size of the female. Excluding the effects of interaction among causal variables, the negative correlation of male size alone on clutch size suggests that a small male did not limit an individual's mating and fertilization success. When the effect of host size is removed statistically, there exists a significant negative relationship between the sizes of paired males and females. This indicates that the resources available from host fish are limited, and that competition exists between paired male and female resulting in a trade-off of body size. Due to the very low success rate of hunting for a host of mancas, a female with larger body size and higher fecundity has a fitness advantage. To augment the clutch size, a productive combination is a smaller male and a larger female in a host. The constraints of the limited resources and the trade-off between the sizes of paired male and female may favor I. fushanensis to adopt the reproductive strategy of protandrous sex change resulting in a larger female and hence more mancas. The pattern of the interactions among male, female, and the number of mancas, may be considered as a selective force for I. fushanensis protandrous sex change, where the available resources are constrained by the size of the host. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We quantified the effects of increasing small hive beetle (Aethina tumida Murray) populations on guarding behavior of Cape honey bees (Apis mellifera capensis, an African subspecies). We found more confinement sites (prisons) at the higher (50 beetles per colony) rather than lower (25 beetles per colony) beetle density. The number of beetles per prison did not change with beetle density. There were more guard bees per beetle during evening than morning. Neither guard bee nor beetle behavior varied with beetle density or over time. Forty-six percent of all beetles were found among the combs at the low beetle density and this increased to 58% at the higher one. In neither instance were beetles causing depredation to host colonies. Within the limits of the experiment, guarding behavior of Cape honey bees is relatively unaffected by increasing beetle density (even if significant proportions of beetles reach the combs).  相似文献   

20.
Summary European and African subspecies of honeybees (Apis mellifera L.) utilize social encapsulation to contain the small hive beetle (Aethina tumida Murray), a honeybee colony scavenger. Using social encapsulation, African honeybees successfully limit beetle reproduction that can devastate host colonies. In sharp contrast, European honeybees often fail to contain beetles, possibly because their social encapsulation skills may be less developed than those of African honeybees. In this study, we quantify beetle and European honeybee behaviours associated with social encapsulation, describe colony and time (morning and evening) differences in these behaviours (to identify possible circadian rhythms), and detail intra-colonial, encapsulated beetle distributions. The data help explain the susceptibility of European honeybees to depredation by small hive beetles. There were significant colony differences in a number of social encapsulation behaviours (the number of beetle prisons and beetles per prison, and the proportion of prison guard bees biting at encapsulated beetles) suggesting that successful encapsulation of beetles by European bees varies between colonies. We also found evidence for the existence of circadian rhythms in small hive beetles, as they were more active in the evening rather than morning. In response to increased beetle activity during the evening, there was an increase in the number of prison guard bees during evening. Additionally, the bees successfully kept most (~93%) beetles out of the combs at all times, suggesting that social encapsulation by European honeybees is sufficient to control small populations of beetles (as seen in this study) but may ultimately fail if beetle populations are high.Received 20 January 2003; revised 21 April 2003; accepted 29 April 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号