首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during the inhibitory process. Protection from inhibition by antithrombin and heparin cofactor II requires ligation of both exosites 1 and 2 because minimal protection is seen when exosite 1 variants (gamma-thrombin and thrombin Quick 1) or an exosite 2 variant (Arg93 --> Ala, Arg97 --> Ala, and Arg101 --> Ala thrombin) is substituted for thrombin. Likewise, the rate of thrombin inhibition by the heparin-independent inhibitor, alpha1-antitrypsin Met358 --> Arg, is decreased less than 2-fold in the presence of soluble fibrin and heparin. In contrast, thrombin is protected from inhibition by a covalent antithrombin-heparin complex, suggesting that access of heparin to exosite 2 of thrombin is hampered when ternary complex formation occurs. These results reveal the importance of exosites 1 and 2 of thrombin in assembly of the ternary complex and the subsequent protection of thrombin from inhibition by heparin-catalyzed inhibitors.  相似文献   

2.
R Procyk  B Blomb?ck 《Biochemistry》1990,29(6):1501-1507
Fibrinogen contains 29 disulfide bonds. Limited reduction in buffers containing calcium led to cleavage of three of them: the two A alpha 442Cys-A alpha 472Cys intrapeptide disulfide bonds and the symmetrical A alpha 28Cys-A alpha 28Cys bond. The limited reduction did not affect clotting by thrombin. However, a prolongation of the thrombin clotting time occurred when the limited reduction took place in the absence of calcium. The bonds reduced under this condition included the three already mentioned and also the two gamma 326Cys-gamma 339Cys intrapeptide disulfide bonds located in the C-terminal ends of the gamma-chain. N-Terminal analysis of thrombin-treated samples showed that thrombin cleavage occurred at the normal A alpha 16-A alpha 17 site in fibrinogen that was partially reduced in the presence of calcium. By contrast, thrombin cleaved at the A alpha 19-A alpha 20 site in fibrinogen that was partially reduced in the absence of calcium, rendering the protein unclottable by removing the A alpha 17Gly-18Pro-19Arg peptide. The loss of thrombin clottability may have also come from gamma 326Cys-gamma 339Cys disulfide bond reduction since the structure supported by this bond may be important for the function of the C-terminal polymerization site. In samples of the partially reduced fibrinogen lacking the A alpha 17-19 residues, gel formation occurred through an oligomerization mechanism catalyzed by factor XIII.  相似文献   

3.
Calcium spirulan (Ca-SP), a novel sulfated polysaccharide, increases the rate of thrombin inhibition by heparin cofactor II (HCII) more than 1000-fold through a mechanism not requiring the amino-terminal acidic domain of HCII. Activation of HCII by Ca-SP was molecular-weight dependent. Furthermore, HD22, an aptamer that binds exosite II of thrombin, produced a concentration-dependent, 15-fold reduction at 5 microM in the rate of thrombin inhibition by HCII with Ca-SP, suggesting that Ca-SP interacts with exosite II of thrombin. Mutations of Lys173 to Leu (K173L) and Arg189 to Leu (R189L) in the HCII molecule resulted in large decreases in the rate of thrombin inhibition mediated by Ca-SP and in the NaCl concentration needed for elution from Ca-SP-Toyopearl. Mutations of Lys173 to Arg (K173R) and Arg189 to Lys (R189K) showed inhibition of thrombin similar to wild-type rHCII (wt-rHCII). These results indicate that Ca-SP binds to the positive charges of Lys173 and Arg189 on the HCII molecule. In the thrombin inhibitory process by HCII, Ca-SP appears to play as a template by binding to both thrombin and HCII.  相似文献   

4.
Activity-dependent selective reduction of synaptic efficacy is expressed in an in vitro system involving mouse spinal cord and muscle cells. Thrombin or electrical stimulation of the innervating axons induces a decrease in neuromuscular synapse strength, and a specific thrombin inhibitor, hirudin, blocks the electrically evoked down-regulation of synapse effectiveness. We further demonstrate that a thrombin receptor-activating peptide (TRAP), SFLLRNPNDKYEPF, produces a decrement of synapse strength. Both TRAP and electrically evoked synapse decrement are prevented by the specific protein kinase C blocker calphostin C, and the TRAP-evoked synapse decrement is unaffected by a specific protein kinase A blocker, H-89. Thus, we propose that muscle activity, thrombin release, and thrombin receptor and PKC activation are initial steps in the process of the activity-dependent synapse reduction expressed in our system.  相似文献   

5.
Thrombin, a potent platelet activating agent, has previously been found to increase intracellular calcium levels and/or thromboxane A2 synthesis in leukemic cell lines exhibiting specific markers of the megakaryocyte/platelet lineage. However, its functional role on these cells has not been defined. As thrombin is implicated in the regulation of cellular proliferation or differentiation in various other cell types, we investigated the functional effects of thrombin on the megakaryoblastic MEG-01 cell line, and further explored its receptor coupling mechanisms on these cells. We observed that thrombin caused in 1% serum containing culture medium, a reduction in the proliferation of MEG-01 cells, without affecting their differentiation stage as determined by the expression of platelet glycoproteins GPIIb/IIIa and GPIb, FVIII-related-antigen and cell-size measurement, which are specific markers for megakaryocyte maturation. In addition, incubation of MEG-01 cells with thrombin resulted in dose-dependent increases in cAMP levels, and in inositol-trisphosphate formation and intracellular Ca2+ levels. All these responses required thrombin proteolytic activity. The lipoxygenase inhibitor, nordihydroguaiaretic acid, blunted thrombin-induced calcium increase without affecting thrombin-induced increase in cAMP levels, suggesting different thrombin coupling mechanisms with these two second messenger pathways. In addition, the inhibitory effect of thrombin on MEG-01 cell growth was mimicked by cAMP level enhancing agents such as forskolin, prostaglandin E1 and Bt2cAMP. These results suggest the involvement of a cAMP-dependent mechanism in the thrombin-induced reduction in MEG-01 cell growth.  相似文献   

6.
Activated platelets release proteins that form stable complexes with thrombin (J. J. Miller, P. C. Browne, and T. C. Detwiler, Biochem. Biophys. Res. Commun. 151, 9-15, 1988). A working model for the reaction (P. C. Browne, J. J. Miller, and T. C. Detwiler, Arch. Biochem. Biophys. 265, 534-538, 1988) includes a dissociable complex of thrombin with released platelet protease nexin, leading to formation of a nondissociable thrombin-nexin complex that then becomes disulfide linked to thrombospondin. This disulfide-linked complex is converted back to the thrombin-nexin complex by reduction of disulfide bonds. Results that allow elaboration on this model are presented. After longer periods of incubation or after incubation with higher concentrations of thrombin, the amount of thrombin complexed with thrombospondin exceeded the amount of thrombin-nexin complex recovered after reduction of disulfide bonds. When the reaction mixture included inhibitors of formation of the thrombin-nexin complex, a slow formation of the thrombin-thrombospondin complex was observed. It was concluded that there is a nexin-independent as well as the faster nexin-dependent disulfide linkage of thrombin to thrombospondin. Addition of thrombin-antithrombin III complexes to the supernatant solution of activated platelets also led to complexes with thrombospondin, demonstrating that serpins other than platelet protease nexin facilitate incorporation of thrombin into complexes with thrombospondin. By heparin affinity chromatography, it was shown that thrombin-nexin complexes dissociably associate with thrombospondin prior to formation of disulfide-linked complexes. These observations are incorporated into a more detailed model of the reaction.  相似文献   

7.
Localization of thrombomodulin-binding site within human thrombin   总被引:3,自引:0,他引:3  
A binding site for thrombomodulin on human thrombin (alpha-thrombin) was elucidated by identifying an epitope for a monoclonal antibody for thrombin (MT-6) which inhibited the activation of protein C by the thrombin-thrombomodulin complex by directly inhibiting the binding of thrombin to thrombomodulin. An 8.5-kDa fragment isolated by digestion of thrombin with Staphylococcus aureus V8 protease followed by reversed-phase high performance liquid chromatography (HPLC) and a peptide isolated by reversed-phase HPLC after reduction of the 8.5-kDa fragment, which was composed of three peptides linked by disulfide-bonds, bound directly to MT-6 and thrombomodulin. The amino acid sequence of the peptide coincided with the sequence of residues Thr-147 to Asp-175 of the B-chain of thrombin. A synthetic peptide corresponding to Thr-147 to Ser-158 of the B-chain inhibited the binding of thrombin to thrombomodulin. Elastase-digested thrombin, which was cleaved between Ala-150 and Asn-151, lost its binding affinity for both MT-6 and thrombomodulin. These findings indicate that the binding site for thrombomodulin is located within the sequence between Thr-147 and Ser-158 of the B-chain.  相似文献   

8.
The A- and B-chains have been isolated from the non-covalent complex of human thrombin A- and B-chains, using selective reduction of the interchain disulfide bridge. The B-chain thus isolated (de-A-thrombin) retains its conformation, which is close to the native one and thus differs considerably from the B-chain isolated from the fully reduced enzyme. Nevertheless, the proteolytic (in terms of fibrinogen clotting) and amidase activities of de-A-thrombin are markedly reduced as compared to the native enzyme and the non-covalent complex of A- and B-chains. It is assumed that the A-chain of thrombin is necessary for normal functioning of the active site of thrombin localized in the B-chain.  相似文献   

9.
Abstract: Thrombin is one of the first regulatory molecules present at sites of CNS trauma or injury. Exposure of neuronal and glial cells to thrombin produces potent morphological as well as cytoprotective and cytotoxic effects, but little is known about how this important modulator affects neurotransmitter signaling. In astrocyte cultures that have been morphologically differentiated by exposure to transforming growth factor-α, addition of thrombin induced a retraction of astrocytic processes and suppressed the stimulation of phosphoinositide hydrolysis by the selective metabotropic glutamate receptor (mGluR) agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid. In addition to the suppression of phosphoinositide hydrolysis, thrombin treatment produced a corresponding reduction in level of mGluR5 mRNA as demonstrated with ribonuclease protection assay and reduced content of mGluR5 receptor protein as seen with western blotting. In contrast, thrombin exposure up-regulated astrocyte β-actin mRNA levels. A synthetic hexapeptide with a sequence corresponding to the amino-terminus of the thrombin receptor's tethered ligand also mimicked the ability of thrombin to suppress mGluR5 levels and to increase β-actin mRNA content, suggesting that these effects of thrombin are mediated by proteolytically activated cell surface thrombin receptors. Thrombin's suppressive effect on mGluR5 was resistant to pretreatment with pertussis toxin or various protein kinase and protein phosphatase inhibitors. However, the serine/threonine protein kinase inhibitor H-7 did prevent thrombin-induced reversal of astrocyte stellation and induction of β-actin mRNA levels, indicating that these effects of thrombin involve a signaling pathway distinct from the one that mediates the suppressive effects of thrombin on mGluR5.  相似文献   

10.
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.  相似文献   

11.
Tetradecanoylphorbol acetate (TPA) activates primarily only the protein kinase C pathway not the calcium ion-dependent pathway in platelets. The net effect of this split activation is that only the pseudopodal cytoskeleton assembles, not the contractile cytoskeleton needed for rapid secretion. In this study, platelets were first activated with TPA, then activated secondarily with either thrombin or arachidonate and the subsequent dense body secretion, calcium-ion mobilization, protein phosphorylation and cytoskeletal assembly compared to these same processes in control platelets activated solely with either thrombin or arachidonate. Secretion was reduced as the length of time between the primary and secondary activation was increased; but at a 2-3 min interval, where the activation by TPA was essentially complete, the reduction in the total radiolabeled serotonin secreted was small. Furthermore, nearly normal cytosolic calcium-ion increases, phosphorylation of myosin light chain and contractile cytoskeletal development were induced by thrombin or arachidonate after this interval. Prior treatment of the platelets with 100 microM acetylsalicylate to block the cyclooxygenase-dependent pathway caused minor reduction in dense-body secretion induced by TPA or thrombin or the combination of both, but otherwise the relative results were comparable to the untreated platelets. Therefore, short-term prior activation of gel-filtered platelets with TPA, even at concentrations in excess of 100-times that required to saturate protein kinase C, does not prevent normal activation of the calcium ion dependent processes through either the cyclooxygenase-dependent or -independent pathway. Longer-term preincubations with TPA differentially inhibit the secretion response induced by thrombin and arachidonate.  相似文献   

12.
Activity‐dependent selective reduction of synaptic efficacy is expressed in an in vitro system involving mouse spinal cord and muscle cells. Thrombin or electrical stimulation of the innervating axons induces a decrease in neuromuscular synapse strength, and a specific thrombin inhibitor, hirudin, blocks the electrically evoked down‐regulation of synapse effectiveness. We further demonstrate that a thrombin receptor‐activating peptide (TRAP), SFLLRNPNDKYEPF, produces a decrement of synapse strength. Both TRAP and electrically evoked synapse decrement are prevented by the specific protein kinase C blocker calphostin C, and the TRAP‐evoked synapse decrement is unaffected by a specific protein kinase A blocker, H‐89. Thus, we propose that muscle activity, thrombin release, and thrombin receptor and PKC activation are initial steps in the process of the activity‐dependent synapse reduction expressed in our system. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 369–381, 1999  相似文献   

13.
Thrombomodulin (TM) slows down the interaction rate between thrombin and plasminogen activator inhibitor 1 (PAI-1). We now show that the 12-fold reduced inhibition rate in the presence of TM does not result from an altered distribution between PAI-1 cleavage and irreversible complex formation. Surface plasmon resonance (SPR) revealed an over 200-fold reduced affinity of TM for thrombin-VR1tPA as compared to thrombin, demonstrating the importance of the VR1 loop in the interaction of thrombin with both TM and PAI-1. Furthermore, in contrast to ATIII, PAI-1 was not able to bind the thrombin/TM complex demonstrating complete competitive binding between PAI-1 and TM. Kinetic modeling on the inhibitory effect of TM confirms a mechanism that involves complete steric blocking of the thrombin/PAI-1 interaction. Also, it accurately decribes the biphasic inhibition profile resulting from the substantial reduction of the extremely fast rate of reversible Michaelis complex formation, which is essential for efficient inhibition of thrombin by PAI-1. Vitronectin (VN) is shown to partially relieve TM inhibitory action only by vastly increasing the initial rate of interaction between free thrombin and PAI-1. In addition, SPR established that solution-phase PAI-1/VN complexes and non-native VN (extracellular matrix form) bind TM directly via the chondroitin sulphate moiety of TM. Collectively, these results show that VR1 is a subsite of exosite 1 on thrombin's surface, which regulates exclusive binding of either PAI-1 or TM. This competition will be physiologically significant in controlling the mitogenic activity of thrombin during vascular disease.  相似文献   

14.
Out of 29 disulfide bonds in human fibrinogen, 7 were cleaved during limited reduction under nondenaturing conditions in calcium-free buffer: 2 A alpha 442Cys-A alpha 472Cys and 2 gamma 326Cys-gamma 339Cys intrachain disulfide bonds in the carboxy-terminal ends of the A alpha- and gamma-chains and the symmetrical disulfide bonds at gamma 8Cys, gamma 9Cys, and A alpha 28Cys. We studied the loss of thrombin clottability that followed limited reduction and the increase in the susceptibility of the fibrinogen A alpha 19-A alpha 20 bond to hydrolysis by thrombin. Using differential scanning calorimetry, we show that the extent of unfolding and denaturation of specific domains following limited reduction is small. Heat absorption peaks corresponding to the melting of the major regions of compact structure give high calorimetric enthalpies, as in untreated nonreduced fibrinogen, indicating that substantial regions of native structure are still present in partially reduced fibrinogen. Thrombin releases fibrinopeptide A at an identical rate as in nonreduced fibrinogen while fibrinopeptide B release is slower. Sedimentation velocity studies show that thrombin treatment leads to complex formation; however, gelation does not occur. Amino-terminal analysis indicates that the second thrombin cleavage in the A alpha-chain at A alpha 19-A alpha 20 takes place only after fibrinopeptide A release. Thus, the loss of clottability appears to result from perturbation of carboxy-terminal polymerization sites, probably a consequence of gamma 326Cys-gamma 339Cys intrachain disulfide bond cleavage. The thrombin-treated partially reduced fibrinogen remains soluble in buffered saline and fully expresses at least one epitope, B beta 15-21, unique to fibrin. Furthermore, this nonclottable form accelerates the tissue plasminogen activator dependent conversion of plasminogen to plasmin.  相似文献   

15.
Eight different sulfated polysaccharides were isolated from Chlorophyta. All exhibited thrombin inhibition through a heparin cofactor II (HCII)-dependent pathway, and their effects on the inhibition of thrombin were more potent than those of heparin or dermatan sulfate. In particular, remarkably potent thrombin inhibition was found for the sulfated polysaccharides isolated from the Codiales. In the presence of these sulfated polysaccharides, both the recombinant HCII (rHCII) variants Lys(173)-->Leu and Arg(189)-->His, which are defective in interactions with heparin and dermatan sulfate, respectively, inhibited thrombin in a manner similar to native rHCII. This result indicates that the binding site of HCII for each of these eight sulfated polysaccharides is different from the heparin- or dermatan sulfate-binding site. All the sulfated polysaccharides but RS-2 significantly stimulated the inhibition of thrombin by an N-terminal deletion mutant of HCII (rHCII-Delta74). Furthermore, hirudin(54-65) decreased only 2-5-fold the rate of thrombin inhibition by HCII stimulated by the sulfated polysaccharides, while HD22, a single-stranded DNA aptamer that binds exosite II of thrombin, produced an approximately 10-fold reduction in this rate. These results suggest that, unlike heparin and dermatan sulfate, the sulfated polysaccharides isolated from Chlorophyta activate HCII primarily by an allosteric mechanism different from displacement and template mechanisms.  相似文献   

16.
Recombinant hirudin (r-hirudin), unlike the naturally occurring leech protein, lacks a sulfate ester on Tyr-63 which reduces its binding affinity to thrombin by 3-10-fold. We demonstrate that nitration or iodination of Tyr-63 restores hirudin-thrombin affinity to levels similar to or exceeding that of the natural inhibitor. In contrast, nitration of Tyr-3 reduces the affinity of hirudin for thrombin. These chemical modifications results in multiple reaction products that are readily separated by reverse-phase HPLC. The mechanism of the observed changes in thrombin affinity may involve a reduction in the pK of the hydroxyl group of tyrosine due to substitution of the electrophilic iodo or nitro group on the phenyl ring, resulting in an increased negative charge at neutral pH. For Tyr-63, this effect mimics the sulfatotyrosine of natural hirudin, leading to an increased thrombin affinity at the anion-binding exosite. For Tyr-3, the increased polarity may destabilize its interaction within the apolar-binding site of thrombin. Substitution of the highly conserved Tyr-3 residue with Phe or Trp not only enables specific and quantitative chemical modification at Tyr-63 but also independently increases hirudin-thrombin affinity. Kinetic analysis of thrombin inhibition showed that enhanced binding by r-hirudin(nitro-Tyr-63) is due to an increase in the association rate between hirudin and thrombin whereas the reduced binding of r-hirudin(nitro-Tyr-3) results from a large increase in the dissociation rate. These observations indicate that specific segments within both the amino- and carboxy-terminal regions of hirudin interact with thrombin.  相似文献   

17.
18.
The localization of thrombin receptors on mouse embryo (ME) cells has been examined by direct fluorescence microscopy using a fluorescein aminelabeled thrombin. Two fluorescein amines, 4-(N-6-aminoethyl thioureal)-fluorescein and 4-(N-6-aminohexyl thioureal)-fluorescein, were synthesized and attached to the carbohydrate moiety of highly purified human α-thrombin by periodate oxidation of the carbohydrate and selective reduction of the Schiff's base using sodium cyanoborohydride. Preparations of fluorescent thrombin with from 1 to 4 fluoresceins per molecule of thrombin retained their ability to proteolytically cleave fibrinogin to form fibrin clots, to bind to thrombin receptors on ME cells, and to initiate cell division. After incubating mitogenic concentrations of the fluorescein amine labeled thrombin with ME cells at 4°C, a diffuse fluorescent pattern was observed over the surface of the ME cells. This diffuse pattern was specific: it was not observed on cells from parallel cultures incubated with fluorescent thrombin plus a 20-fold excess of unlabeled thrombin. Thus, thrombin receptors appear to be distributed randomly over the surface of ME cells prior to interaction with thrombin. Increasing the temperature to 37°C following binding at 4° C resulted in a rapid dissociation of the fluorescent pattern from the cells leaving only the autofluorescent vesicles. This result may reflect the unique ability of thrombin to proteolytically cleave its own receptor.  相似文献   

19.
Human leuserpin-2 (hLS2) cDNA variants generated by site-directed mutagenesis were expressed in a transient COS cell system. Functional analysis of the mutants revealed two regions in the NH2-terminal half of hLS2 which are essential for glycosaminoglycan-enhanced thrombin inhibition by hLS2. One of these regions, which encompasses a dimeric structure enriched in basic amino acids, is required for both glycosaminoglycan binding and glycosaminoglycan-mediated acceleration of thrombin inhibition. Deletion of another dimeric region, which spans a sequence with a high negative charge density, resulted in a strong reduction in the glycosaminoglycan-enhanced activity of hLS2. This polyanionic region displays structural and functional similarities to the COOH-terminal end of hirudin, another potent thrombin inhibitor, indicating that both inhibitors may have a common binding site on thrombin. Based on our observations we propose a model for the activation of hLS2 by glycosaminoglycans. The key feature of this model is the suggestion that the glycosaminoglycan-enhanced reaction between hLS2 and thrombin is mediated by at least two regions of contact, involving both the reactive center region and the acidic domain of hLS2. Binding of glycosaminoglycans to hLS2 is suggested to result first in the release of the acidic region from intramolecular interactions. Then, amino acid sequences in thrombin are proposed to interact with the acidic dimer of hLS2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号