首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fly》2013,7(4):198-214
Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization, RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627, and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male-specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2), and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome’s normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation.  相似文献   

2.
Protein palmitoylation is rapidly emerging as an important determinant in the regulation of ion channels, including large conductance calcium-activated potassium (BK) channels. However, the enzymes that control channel palmitoylation are largely unknown. Indeed, although palmitoylation is the only reversible lipid modification of proteins, acyl thioesterases that control ion channel depalmitoylation have not been identified. Here, we demonstrate that palmitoylation of the intracellular S0-S1 loop of BK channels is controlled by two of the 23 mammalian palmitoyl-transferases, zDHHC22 and zDHHC23. Palmitoylation by these acyl transferases is essential for efficient cell surface expression of BK channels. In contrast, depalmitoylation is controlled by the cytosolic thioesterase APT1 (LYPLA1), but not APT2 (LYPLA2). In addition, we identify a splice variant of LYPLAL1, a homolog with ~30% identity to APT1, that also controls BK channel depalmitoylation. Thus, both palmitoyl acyltransferases and acyl thioesterases display discrete substrate specificity for BK channels. Because depalmitoylated BK channels are retarded in the trans-Golgi network, reversible protein palmitoylation provides a critical checkpoint to regulate exit from the trans-Golgi network and thus control BK channel cell surface expression.  相似文献   

3.
Palmitoyl Protein Thioesterase 1 (PPT1) is an essential lysosomal protein in the mammalian nervous system whereby defects result in a fatal pediatric disease called Infantile Neuronal Ceroids Lipofuscinosis (INCL). Flies bearing mutations in the Drosophila ortholog Ppt1 exhibit phenotypes similar to the human disease: accumulation of autofluorescence deposits and shortened adult lifespan. Since INCL patients die as young children, early developmental neural defects due to the loss of PPT1 are postulated but have yet to be elucidated. Here we show that Drosophila Ppt1 is required during embryonic neural development. Ppt1 embryos display numerous neural defects ranging from abnormal cell fate specification in a number of identified precursor lineages in the CNS, missing and disorganized neurons, faulty motoneuronal axon trajectory, and discontinuous, misaligned, and incorrect midline crossings of the longitudinal axon bundles of the ventral nerve cord. Defects in the PNS include a decreased number of sensory neurons, disorganized chordotonal neural clusters, and abnormally shaped neurons with aberrant dendritic projections. These results indicate that Ppt1 is essential for proper neuronal cell fates and organization; and to establish the local environment for proper axon guidance and fasciculation. Ppt1 function is well conserved from humans to flies; thus the INCL pathologies may be due, in part, to the accumulation of various embryonic neural defects similar to that of Drosophila. These findings may be relevant for understanding the developmental origin of neural deficiencies in INCL.  相似文献   

4.
Infantile Batten disease is a severe neurodegenerative storage disorder caused by mutations in the human PPT1 (palmitoyl protein thioesterase 1) gene, which encodes a lysosomal hydrolase that removes fatty acids from lipid-modified proteins. PPT1 has orthologs in many species, including lower organisms and plants, but not in Saccharomyces cerevisiae. The fission yeast Schizosaccharomyces pombe contains a previously uncharacterized open reading frame (SPBC530.12c) that encodes the S. pombe Ppt1p ortholog fused in frame to a second enzyme that is highly similar to a previously cloned mouse dolichol pyrophosphatase (Dolpp1p). In the present study, we characterized this interesting gene (designated here as pdf1, for palmitoyl protein thioesterase-dolichol pyrophosphate phosphatase fusion 1) through deletion of the open reading frame and complementation by plasmids bearing mutations in various regions of the pdf1 sequence. Strains bearing a deletion of the entire pdf1 open reading frame are nonviable and are rescued by a pdf1 expression plasmid. Inactivating mutations in the Dolpp1p domain do not rescue the lethality, whereas mutations in the Ppt1p domain result in cells that are viable but abnormally sensitive to sodium orthovanadate and elevated extracellular pH. The latter phenotypes have been previously associated with class C and class D vacuolar protein sorting (vps) mutants and vacuolar membrane H(+)-ATPase (vma) mutants in S. cerevisiae. Importantly, the Ppt1p-deficient phenotype is complemented by the human PPT1 gene. These results indicate that the function of PPT1 has been widely conserved throughout evolution and that S. pombe may serve as a genetically tractable model for the study of human infantile Batten disease.  相似文献   

5.
Cysteine-string protein (CSP) is an extensively palmitoylated DnaJ-family chaperone, which exerts an important neuroprotective function. Palmitoylation is required for the intracellular sorting and function of CSP, and thus it is important to understand how this essential modification of CSP is regulated. Recent work identified 23 putative palmitoyl transferases containing a conserved DHHC domain in mammalian cells, and here we show that palmitoylation of CSP is enhanced specifically by co-expression of the Golgi-localized palmitoyl transferases DHHC3, DHHC7, DHHC15, or DHHC17. Indeed, these DHHC proteins promote stable membrane attachment of CSP, which is otherwise cytosolic. An inverse correlation was identified between membrane affinity of unpalmitoylated CSP mutants and subsequent palmitoylation: mutants with an increased membrane affinity localize to the endoplasmic reticulum (ER) and are physically separated from the Golgi-localized DHHC proteins. Palmitoylation of an ER-localized mutant could be rescued by brefeldin A treatment, which promotes the mixing of ER and Golgi membranes. Interestingly though, the palmitoylated mutant remained at the ER following brefeldin A washout and did not traffic to more distal membrane compartments. We propose that CSP has a weak membrane affinity that allows the protein to locate its partner Golgi-localized DHHC proteins directly by membrane "sampling." Mutations that enhance membrane association prevent sampling and lead to accumulation of CSP on cellular membranes such as the ER. The coupling of CSP palmitoylation to Golgi membranes may thus be an important requirement for subsequent sorting.  相似文献   

6.
Protein S‐palmitoylation is a reversible post‐translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S‐palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp‐His‐His‐Cys (DHHC)‐family palmitoyl S‐acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl‐protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S‐palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.  相似文献   

7.
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca2+/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting.  相似文献   

8.
Previously, we identified cytoskeleton-associated protein 4 (CKAP4) as a major substrate of the palmitoyl acyltransferase, DHHC2, using a novel proteomic method called palmitoyl-cysteine identification, capture and analysis (PICA). CKAP4 is a reversibly palmitoylated and phosphorylated protein that links the ER to the cytoskeleton. It is also a high-affinity receptor for antiproliferative factor (APF), a small sialoglycopeptide secreted from bladder epithelial cells of patients with interstitial cystitis (IC). The role of DHHC2-mediated palmitoylation of CKAP4 in the antiproliferative response of HeLa and normal bladder epithelial cells to APF was investigated. Our data show that siRNA-mediated knockdown of DHHC2 and consequent suppression of CKAP4 palmitoylation inhibited the ability of APF to regulate cellular proliferation and blocked APF-induced changes in the expression of E-cadherin, vimentin, and ZO-1 (genes known to play a role in cellular proliferation and tumorigenesis). Immunocytochemistry revealed that CKAP4 palmitoylation by DHHC2 is required for its trafficking from the ER to the plasma membrane and for its nuclear localization. These data suggest an important role for DHHC2-mediated palmitoylation of CKAP4 in IC and in opposing cancer-related cellular behaviors and support the idea that DHHC2 is a tumor suppressor.  相似文献   

9.
徐嘉娟  李火根 《广西植物》2016,36(9):1052-1060
棕榈酰化修饰是一种最普遍且唯一可逆的翻译后脂质修饰方式,赋予蛋白质多样化的生理功能。DHHC( Asp-His-His-Cys)蛋白家族是一类与棕榈酰化修饰相关的蛋白,多数DHHC蛋白家族成员具有蛋白质酰基转移酶( protein S-acyltransferase,PAT)活性。该研究以鹅掌楸叶芽为材料,采用RT-PCR和RACE技术,克隆获得了3个鹅掌楸DHHC蛋白家族基因cDNA全长,命名为LcPAT7、LcPAT22、LcPAT23。序列分析结果表明:LcPAT7、LcPAT22、LcPAT23基因全长分别为1933、2592、2217 bp,各包含1332、1839、1662 bp的开放阅读框( Open Reading Frame,ORF),编码433、612、533个氨基酸,预测蛋白分子量分别为40.04、67.3、60.57 kDa,理论等电点为9.15、9.03、7.29。3个基因编码的蛋白均有4个跨膜区,并且都在跨膜域( transmembrane domain, TM) TM2和 TM3之间存在一个 DHHC 蛋白家族典型的 DHHC-CRD 结构域。同源性分析表明:鹅掌楸LcPAT7、LcPAT22、LcPAT23编码的氨基酸序列与其他植物中预测的PAT具有较高的相似性。利用荧光定量PCR技术检测3个基因在鹅掌楸不同组织中的表达特性,发现3个基因在不同组织中均有表达,但表达量具有明显区别。同一家族基因表达模式的变化表明其功能非冗余。该研究结果将为鹅掌楸生长发育与形态建成,以及逆境响应信号传导等相关基因的调控研究提供了参考。  相似文献   

10.
Acyl-protein thioesterase-1 (APT1) and APT2 are cytosolic enzymes that catalyze depalmitoylation of membrane-anchored, palmitoylated H-Ras and growth-associated protein-43 (GAP-43), respectively. However, the mechanism(s) of cytosol-membrane shuttling of APT1 and APT2, required for depalmitoylating their substrates H-Ras and GAP-43, respectively, remained largely unknown. Here, we report that both APT1 and APT2 undergo palmitoylation on Cys-2. Moreover, blocking palmitoylation adversely affects membrane localization of both APT1 and APT2 and that of their substrates. We also demonstrate that APT1 not only catalyzes its own depalmitoylation but also that of APT2 promoting dynamic palmitoylation (palmitoylation-depalmitoylation) of both thioesterases. Furthermore, shRNA suppression of APT1 expression or inhibition of its thioesterase activity by palmostatin B markedly increased membrane localization of APT2, and shRNA suppression of APT2 had virtually no effect on membrane localization of APT1. In addition, mutagenesis of the active site Ser residue to Ala (S119A), which renders catalytic inactivation of APT1, also increased its membrane localization. Taken together, our findings provide insight into a novel mechanism by which dynamic palmitoylation links cytosol-membrane trafficking of APT1 and APT2 with that of their substrates, facilitating steady-state membrane localization and function of both.  相似文献   

11.
Mammalian proteins that contain an aspartate-histidine-histidine-cysteine-(DHHC) motif have been recently identified as a group of membrane-associated palmitoyl acyltransferases (PATs). Among the several protein substrates known to become palmitoylated by DHHC PATs are small GTPases prenylated at their carboxy-terminal end, such as H-Ras or N-Ras, eNOS, kinases myristoylated at their N-terminal end, such as Lck, and many transmembrane proteins and channels. We have focused our studies on the product of the human gene DHHC19, a putative palmitoyl transferase that, interestingly, displays a conserved CaaX box at its carboxy-terminal end. We show herein that the amino acid sequence present at the carboxy-terminus of DHHC19 is able to exclude a green fluorescent protein (GFP) reporter from the nucleus and direct it towards perinuclear regions. Transfection of full-length DHHC19 in COS7 cells reveals a perinuclear distribution, in analogy to other palmitoyl transferases, with a strong colocalization with the trans-Golgi markers Gal-T and TGN38. We have tested several small GTPases that are known to be palmitoylated as possible substrates of DHHC19. Although DHHC19 failed to increase the palmitoylation of H-Ras, N-Ras, K-Ras4A, RhoB or Rap2 it increased the palmitoylation of R-Ras approximately two-fold. The increased palmitoylation of R-Ras cotransfected with DHHC19 is accompanied by an augmented association with membranes as well as with rafts/caveolae. Finally, using both wild-type and an activated GTP bound form of R-Ras (G38V), we also show that the increased palmitoylation of R-Ras due to DHHC19 coexpression is accompanied by an enhanced viability of the transfected cells.  相似文献   

12.
Proteins containing the DHHC motif have been shown to function as palmitoyl transferases. The palmitoylation of proteins has been shown to play an important role in the trafficking of proteins to the proper subcellular location. Herein, we describe a protein containing both ankyrin domains and a DHHC domain that is present in the Golgi of late schizonts of P. falciparum. The timing of expression as well as the location of this protein suggests that it may play an important role in the sorting of proteins to the apical organelles during the development of the asexual stage of the parasite.  相似文献   

13.
Sertoli cells are a type of nurse cell in the seminiferous epithelium that are crucial for sustaining spermatogenesis by extending nutritional and energy support to the developing germ cells. Dysfunction of Sertoli cells could cause disordered spermatogenesis and reduced fertility in males. In this study, we focused on the expression and function of palmitoyl protein thioesterase 1 (PPT1), a lysosomal depalmitoylating enzyme, in Sertoli cells. Here, we show that PPT1 expression in Sertoli cells is responsive to cholesterol treatment and that specific knockout of Ppt1 in Sertoli cells causes male subfertility associated with poor sperm quality and a high ratio of sperm deformity. Specifically, Ppt1 deficiency leads to poor cell variably accompanied with abnormal lysosome accumulation and increased cholesterol levels in Sertoli cells. Further, Ppt1 deficiency results in poor adhesion of developing germ cells to Sertoli cells in the seminiferous epithelium, which is likely to be responsible for the reduced male fertility as a consequence of declines in sperm count and motility as well as a high incidence of sperm head deformity. In summary, PPT1 affects sperm quality and male fertility through regulating lysosomal function and cholesterol metabolism in Sertoli cells.  相似文献   

14.
S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT), while deacylation requires acyl-protein thioesterases (APT), with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP) is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.  相似文献   

15.
Buff H  Smith AC  Korey CA 《Genetics》2007,176(1):209-220
Infantile neuronal ceroid lipofuscinosis (INCL) is a pediatric neurodegenerative disease caused by mutations in the human CLN1 gene. CLN1 encodes palmitoyl-protein thioesterase 1 (PPT1), suggesting an important role for the regulation of palmitoylation in normal neuronal function. To further elucidate Ppt1 function, we performed a gain-of-function modifier screen in Drosophila using a collection of enhancer-promoter transgenic lines to suppress or enhance the degeneration produced by overexpression of Ppt1 in the adult visual system. Modifier genes identified in our screen connect Ppt1 function to synaptic vesicle cycling, endo-lysosomal trafficking, synaptic development, and activity-dependent remodeling of the synapse. Furthermore, several homologs of the modifying genes are known to be regulated by palmitoylation in other systems and may be in vivo substrates for Ppt1. Our results complement recent work on mouse Ppt1(-/-) cells that shows a reduction in synaptic vesicle pools in primary neuronal cultures and defects in endosomal trafficking in human fibroblasts. The pathways and processes implicated by our modifier loci shed light on the normal cellular function of Ppt1. A greater understanding of Ppt1 function in these cellular processes will provide valuable insight into the molecular etiology of the neuronal dysfunction underlying the disease.  相似文献   

16.
As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post‐translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co‐localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non‐infectious to mice. Importantly, genetic complementation of the DHHC3‐ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation.  相似文献   

17.
Posttranslational modifications, including phosphorylation, ubiquitination and lipid modifications, provide proteins with additional functions and regulation beyond genomic information. Palmitoylation is a reversible lipid modification with palmitic acid that plays critical roles in protein trafficking and function. However, the enzymes that mediate palmitoyl acyl transferase (PAT) have been elusive. Recent genetic analysis in yeast revealed that members of cysteine-rich DHHC domain containing proteins (DHHC proteins) mediate palmitoylation. In mammalian genomes, 23 DHHC proteins are predicted raising the possibility of a large family of PAT enzymes. Here, we describe a systematic method to examine which of the DHHC family members is responsible for palmitoylation of a substrate.  相似文献   

18.
Roth AF  Wan J  Bailey AO  Sun B  Kuchar JA  Green WN  Phinney BS  Yates JR  Davis NG 《Cell》2006,125(5):1003-1013
Protein palmitoylation is a reversible lipid modification that regulates membrane tethering for key proteins in cell signaling, cancer, neuronal transmission, and membrane trafficking. Palmitoylation has proven to be a difficult study: Specifying consensuses for predicting palmitoylation remain unavailable, and first-example palmitoylation enzymes--i.e., protein acyltransferases (PATs)--were identified only recently. Here, we use a new proteomic methodology that purifies and identifies palmitoylated proteins to characterize the palmitoyl proteome of the yeast Saccharomyces cerevisiae. Thirty-five new palmitoyl proteins are identified, including many SNARE proteins and amino acid permeases as well as many other participants in cellular signaling and membrane trafficking. Analysis of mutant yeast strains defective for members of the DHHC protein family, a putative PAT family, allows a matching of substrate palmitoyl proteins to modifying PATs and reveals the DHHC family to be a family of diverse PAT specificities responsible for most of the palmitoylation within the cell.  相似文献   

19.
Intracellular palmitoylation dynamics are regulated by a large family of DHHC (Asp-His-His-Cys) palmitoyl transferases. The majority of DHHC proteins associate with endoplasmic reticulum (ER) or Golgi membranes, but an interesting exception is DHHC2, which localizes to dendritic vesicles of unknown origin in neurons, where it regulates dynamic palmitoylation of PSD95. Dendritic targeting of newly synthesized PSD95 is likely preceded by palmitoylation on Golgi membranes by DHHC3 and/or DHHC15. The precise intracellular distribution of DHHC2 is presently unclear, and there is very little known in general about how DHHC proteins achieve their respective localizations. In this study, membrane targeting of DHHC2 in live and fixed neuroendocrine cells was investigated and mutational analysis employed to define regions of DHHC2 that regulate targeting. We report that DHHC2 associates with the plasma membrane, Rab11-positive recycling endosomes, and vesicular structures. Plasma membrane integration of DHHC2 was confirmed by labeling of an extrafacial HA epitope in nonpermeabilized cells. Antibody-uptake experiments suggested that DHHC2 traffics between the plasma membrane and intracellular membranes. This dynamic localization was confirmed using fluorescence recovery after photo-bleaching analysis, which revealed constitutive refilling of the recycling endosome (RE) pool of DHHC2. The cytoplasmic C-terminus of DHHC2 regulates membrane targeting and a mutant lacking this domain was associated with the ER. Although DHHC2 is closely related to DHHC15, these proteins populate distinct membrane compartments. Construction of chimeric DHHC2/DHHC15 proteins revealed that this difference in localization is a consequence of divergent sequences within their C-terminal tails. This study is the first to highlight dynamic cycling of a mammalian DHHC protein between clearly defined membrane compartments, and to identify domains that specify membrane targeting of this protein family.  相似文献   

20.
SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号