首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dietary trans‐fatty acids are associated with increased risk of cardiovascular disease and have been implicated in the incidence of obesity and type 2 diabetes mellitus (T2DM). It is established that high‐fat saturated diets, relative to low‐fat diets, induce adiposity and whole‐body insulin resistance. Here, we test the hypothesis that markers of an obese, prediabetic state (fatty liver, visceral fat accumulation, insulin resistance) are also worsened with provision of a low‐fat diet containing elaidic acid (18:1t), the predominant trans‐fatty acid isomer found in the human food supply. Male 8‐week‐old Sprague–Dawley rats were fed a 10% trans‐fatty acid enriched (LF‐trans) diet for 8 weeks. At baseline, 3 and 6 weeks, in vivo magnetic resonance spectroscopy (1H‐MR) assessed intramyocellular lipid (IMCL) and intrahepatic lipid (IHL) content. Euglycemic–hyperinsulinemic clamps (week 8) determined whole‐body and tissue‐specific insulin sensitivity followed by high‐resolution ex vivo 1H‐NMR to assess tissue biochemistry. Rats fed the LF‐trans diet were in positive energy balance, largely explained by increased energy intake, and showed significantly increased visceral fat and liver lipid accumulation relative to the low‐fat control diet. Net glycogen synthesis was also increased in the LF‐trans group. A reduction in glucose disposal, independent of IMCL accumulation was observed in rats fed the LF‐trans diet, whereas in rats fed a 45% saturated fat (HF‐sat) diet, impaired glucose disposal corresponded to increased IMCLTA. Neither diet induced an increase in IMCLsoleus. These findings imply that trans‐fatty acids may alter nutrient handling in liver, adipose tissue, and skeletal muscle and that the mechanism by which trans‐fatty acids induce insulin resistance differs from diets enriched with saturated fats.  相似文献   

2.
Background: Increased visceral adipose tissue (VAT) is a risk factor for an unfavorable cardio‐metabolic profile and fatty liver. Individuals with human immunodeficiency virus (HIV) on highly active antiretroviral therapy (HAART) can be associated with metabolic syndrome (MS) and higher visceral fat. However, the potential link between cardiac adiposity, emerging index of visceral adiposity, and fatty liver is still unexplored. Objective: To evaluate whether echocardiographic epicardial adipose tissue, index of cardiac adiposity, could be related to serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, surrogate markers of fatty liver, in HIV‐infected patients with (HIV+MS+) and without HAART‐associated MS (HIV+MS‐). Methods and Procedures: This was a cross‐sectional observational study on 57 HIV+MS+ patients, 52 HIV+MS? and 57 HIV‐negative subjects with MS (HIV?MS+), as control group. Epicardial fat thickness and intra‐abdominal VAT were obtained by echocardiography and magnetic resonance imaging (MRI), respectively. Serum ALT and AST activity, plasma adiponectin levels, and MS biochemical parameters were measured. Results: Echocardiographic epicardial fat thickness was correlated with MRI‐VAT (r = 0.83, P < 0.01), AST/ALT ratio (r = 0.77, P < 0.01), ALT (r = 0.58, P < 0.01), AST (r = 0.56, P < 0.01), and adiponectin (r = ?0.45, P < 0.01) in HIV+MS+. MRI‐VAT and AST/ALT ratio were the best correlates of epicardial fat thickness (r 2 = 0.45, P < 0.01). Discussion: This study shows for the first time a clear relationship of epicardial fat, index of cardiac and visceral adiposity, and serum ALT and AST activity, markers of fatty liver, in subjects with increased visceral adiposity and cardio‐metabolic risk. This correlation seems to be independent of overall adiposity and rather function of excess visceral adiposity.  相似文献   

3.
Long‐chain polyunsaturated n‐3 fatty acids (n‐3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep‐AT) and liver were investigated. Male rats were fed a high‐sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU–FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n‐3 LCPUFAs prevented sucrose‐induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n‐3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep‐AT of rats fed the SU–FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n‐3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Objective: To assess the interaction of high‐fat diets (HF) made with different dietary fatty acids and exercise on body‐weight regulation, adiposity, and metabolism. Research Methods and Procedures: Male Wistar rats born to dams fed HF diets (40% w/w) made with either fish oil (FO), soybean oil (SO), or palm oil (PO) were fed diets similar to their dams and divided randomly into exercise (EX, swimming) or sedentary control (SD) groups when they were 9 weeks old. EX lasted for 6 weeks. Twenty‐four hours after the last EX bout, fasted rats were killed by decapitation. Chemical analyses and body composition analysis were conducted. Results: The results demonstrated that different fatty acids had different effects on body weight, composition, and metabolism. SO‐fed rats gained the most weight and fat. EX reduced body weight of FO‐ and PO‐fed rats, but SO‐fed rats were still heavier and fatter than other rats. Data from SO‐ and PO‐fed rats suggested that they are insulin resistant and that EX normalized this abnormality. Of the three HF diets used, FO produced the least adverse effects compared with PO and SO. Discussion: Not only the quantity of dietary fat, but also the type of fat used, will produce different effects on body weight and metabolism. EX ameliorates the suggested insulin resistance induced in rats fed either highly saturated or n‐6 polyunsaturated fatty acids. Long‐chain n‐3 polyunsaturated fatty acids, as found in fish oil, are more beneficial than n‐6 polyunsaturated fatty acids when fed in high amounts to rats.  相似文献   

5.
6.
7.
Objective: The aim of this work was to determine the sex‐associated differences in the expression of genes related to lipid metabolism and fuel partitioning in response to a high‐fat (HF) diet in rats, and whether this is linked to the higher tendency of males to suffer from metabolic disorders. Methods and Procedures: Male and female Wistar rats were fed for 6 months on a normal‐fat (NF) or an HF diet. Body weight, fat depot weight, lipid concentration in liver, blood metabolites, and the expression of genes involved in fuel metabolism and partitioning in the liver, white adipose tissue (WAT), and skeletal muscle were measured. Results: Female rats fed on an HF diet gained more weight and had a greater increase in the adiposity index than male rats, while the circulating insulin levels remained unaltered; these animals also showed an increased expression of genes related to the energy influx in WAT and with fat utilization in skeletal muscle. Male but not female rats showed increased hepatic peroxisome proliferator–activated receptor‐ α (PPAR‐ α ) and CPT1L mRNA expression, suggesting enhanced lipid handling and oxidation by this organ, and have a higher triacylglycerol content in liver. Male rats under the HF diet also displayed higher blood insulin levels. Discussion: These results show sex‐dependent differences in lipid handling and partitioning between tissues in response to an HF diet, with females showing a higher capacity for storing fat in adipose tissue and for oxidizing fatty acids in muscle. These adaptations can help to explain the lower tendency of females to suffer from obesity‐linked disorders under the conditions of an HF diet.  相似文献   

8.
We established a new animal model called SPORTS (Spontaneously‐Running Tokushima‐Shikoku) rats, which show high‐epinephrine (Epi) levels. Recent reports show that Epi activates adenosine monophosphate (AMP)–activated protein kinase (AMPK) in adipocytes. Acetyl‐CoA carboxylase (ACC) is the rate‐limiting enzyme in fatty acid synthesis, and the enzymatic activity is suppressed when its Ser‐79 is phosphorylated by AMPK. The aim of this study was to investigate the in vivo effect of Epi on ACC and abdominal visceral fat accumulation. We divided both 6‐week male control and SPORTS rats into two groups, which were fed either normal diet or high fat and sucrose (HFS) diet for 16 weeks. At the end of diet treatment, retroperitoneal fat was collected for western blotting and histological analysis. Food intake was not different among the groups, but SPORTS rats showed significantly lower weight gain than control rats in both diet groups. After 10 weeks of diet treatment, glucose tolerance tests (GTTs) revealed that SPORTS rats had increased insulin sensitivity. Furthermore, SPORTS rats had lower quantities of both abdominal fat and plasma triglyceride (TG). In abdominal fat, elevated ACC Ser‐79 phosphorylation was observed in SPORTS rats and suppressed by an antagonist of β‐adrenergic receptor (AR), propranolol, or an inhibitor of AMPK, Compound C. From these results, high level of Epi induced ACC phosphorylation mediated through β‐AR and AMPK signaling pathways in abdominal visceral fat of SPORTS rats, which may contribute to reduce abdominal visceral fat accumulation and increase insulin sensitivity. Our results suggest that β‐AR‐regulated ACC activity would be a target for treating lifestyle‐related diseases, such as obesity.  相似文献   

9.
Objective: We tested the following hypotheses in black and white men and women: 1) for a given BMI or waist circumference (WC), individuals with moderate cardiorespiratory fitness (CRF) have lower amounts of total fat mass and abdominal subcutaneous and visceral fat compared with individuals with low CRF; and 2) exercise training is associated with significant reductions in total adiposity and abdominal fat independent of changes in BMI or WC. Research Methods and Procedures: The sample included 366 sedentary male (111 blacks and 255 whites) and 462 sedentary female (203 blacks and 259 whites) participants in the HERITAGE Family Study. The relationships between BMI and WC with total fat mass (determined by underwater weighing) and abdominal subcutaneous and visceral fat (determined by computed tomography) were compared in subjects with low (lower 50%) and moderate (upper 50%) CRF. The effects of a 20‐week aerobic exercise training program on changes in these adiposity variables were examined in 86% of the subjects. Results: Individuals with moderate CRF had lower levels of total fat mass and abdominal subcutaneous and visceral fat than individuals with low CRF for a given BMI or WC value. The 20‐week aerobic exercise program was associated with significant reductions in total adiposity and abdominal fat, even after controlling for reductions in BMI and WC. With few exceptions, these observations were true for both men and women and blacks and whites. Discussion: These findings suggest that a reduction in total adiposity and abdominal fat may be a means by which CRF attenuates the health risk attributable to obesity as determined by BMI and WC.  相似文献   

10.
Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.  相似文献   

11.
Visceral obesity is linked to insulin resistance and cardiovascular disease. A recent genetic study indicated that the gene locus for the anti-oxidant defense enzyme methionine sulphoxide reductase A (MsrA) is positively associated with the development of visceral adiposity. This work tested the hypothesis that Msr activity is diminished in visceral fat as a result of obesity. It used two animal models of obesity, wild-type rats fed a high-fat (45% of calories from fat) diet and Zucker rats fed a 10% fat calorie diet. The data indicate that MsrA activity was selectively reduced by ~ 25% in the visceral adipose, but not subcutaneous adipose or liver, of both rat models as compared to control, wild type rats receiving a 10% fat calorie diet. MsrB activity was similarly reduced only in visceral fat. The data indicate that Msr activity is reduced by obesity and may alter oxidative stress signalling of obesity.  相似文献   

12.
The aim of this study was to investigate effects of dietary supplementation with fat or sugar on body composition (BC) and insulin sensitivity (IS) in maturing pigs. Fifty newborn pigs randomized to a control diet or 18% saturated fat (SF), 18% monounsaturated fat (MUF), 18% mixed fat (MF), or 50% sucrose (SUC), from 1 to 16 weeks of age. Outcomes included weight gain, BC (dual energy X-ray absorptiometry, DXA), IS (fasting insulin and hyperinsulinaemic-euglycaemic clamps), fasting Non-Esterified Fatty Acid (NEFA) concentrations, and mRNA expression of genes involved in lipogenesis and IS in skeletal muscle (SM), subcutaneous (SAT), and visceral adipose tissue (VAT). In vitro studies examined direct effects of fatty acids on insulin-like growth factor-binding protein 2 (IGFBP2) mRNA in C2C12 myotubes. While SUC-fed pigs gained most weight (due to larger quantities consumed; P < 0.01), those fed fat-enriched diets exhibited more weight gain per unit energy intake (P < 0.001). Total (P = 0.03) and visceral (P = 0.04) adiposity were greatest in MUF-fed pigs. Whole-body IS was decreased in those fed fat (P = 0.04), with fasting insulin increased in MUF-fed pigs (P = 0.03). SM IGFBP2 mRNA was increased in MUF-fed pigs (P = 0.009) and, in all animals, SM IGFBP2 mRNA correlated with total (P = 0.007) and visceral (P = 0.001) fat, fasting insulin (r = 0.321; P = 0.03) and change in NEFA concentrations (r = 0.285; P = 0.047). Furthermore, exposure of in vitro cultured myotubes to MUF, but not SF, reduced IGFBP2 mRNA suggesting a converse direct effect. In conclusion, diets high in fat, but not sugar, promote visceral adiposity and insulin resistance in maturing pigs, with evidence that fatty acids have direct and indirect effects on IGFBP2 mRNA expression in muscle.  相似文献   

13.
目的建立饮食诱导非酒精性脂肪肝病(NAFLD)合并高血糖动物模型并观察其特点。方法将64只SD大鼠随机分为2组。正常对照组(用普通饲料饲喂)32只,高糖高脂组(饲以高糖高脂饲料)32只,连续喂养12个月。于实验第3月末、第6月末、第9月末、第12月末观察动物体重、内脏脂肪重量;比较血液中有关血脂、血糖、炎症介质等方面的生化指标以及组织病理学观察。结果与正常对照组相比,各阶段高糖高脂组大鼠体重、内脏脂肪重量明显增加;血清ALT、FFA、LPS、TNFα、FPG、FINS和HOMA-IR的水平都升高,其差异有统计学意义;而HOMA-β以第六个月出现代偿性增强后进行性衰退。病理组织学显示肝脏发生严重的脂变、脂肪肝进而发生肝炎、纤维化及肝硬化;随时间进展胰岛逐渐萎缩并伴有炎性浸润;脂肪细胞逐渐增大并伴有炎性浸润。结论高糖高脂饮食可建立大鼠NAFLD合并高血糖动物模型,该模型可在NAFLD和相关的糖尿病研究中发挥作用。  相似文献   

14.
Chia seeds contain the essential fatty acid, α-linolenic acid (ALA). This study has assessed whether chia seeds attenuated the metabolic, cardiovascular and hepatic signs of a high-carbohydrate, high-fat (H) diet [carbohydrates, 52% (wt/wt); fat, 24% (wt/wt) with 25% (wt/vol) fructose in drinking water] in rats. Diets of the treatment groups were supplemented with 5% chia seeds after 8 weeks on H diet for a further 8 weeks. Compared with the H rats, chia seed-supplemented rats had improved insulin sensitivity and glucose tolerance, reduced visceral adiposity, decreased hepatic steatosis and reduced cardiac and hepatic inflammation and fibrosis without changes in plasma lipids or blood pressure. Chia seeds induced lipid redistribution with lipid trafficking away from the visceral fat and liver with an increased accumulation in the heart. The stearoyl-CoA desaturase-1 products were depleted in the heart, liver and the adipose tissue of chia seed-supplemented rats together with an increase in the substrate concentrations. The C18:1trans-7 was preferentially stored in the adipose tissue; the relatively inert C18:1n-9 was stored in sensitive organs such as liver and heart and C18:2n-6, the parent fatty acid of the n-6 pathway, was preferentially metabolized. Thus, chia seeds as a source of ALA induce lipid redistribution associated with cardioprotection and hepatoprotection.  相似文献   

15.
The effects of running wheel exercise and caloric restriction on the regulation of body weight, adiposity, and hypothalamic neuropeptide expression were compared in diet-induced obese male rats over 6 wk. Compared with sedentary controls, exercising rats had reduced body weight gain (24%), visceral (4 fat pads; 36%) and carcass (leptin; 35%) adiposity but not insulin levels. Hypothalamic arcuate nucleus (ARC) proopiomelanocortin (POMC) mRNA expression was 25% lower, but ARC neuropeptide Y (NPY), agouti- related peptide, dorsomedial nucleus (DMN) NPY, and paraventricular nucleus (PVN) corticotropin- releasing hormone (CRH) expression was comparable to controls. Sedentary rats calorically restricted to 85% of control body weight reduced their visceral adiposity (24%), leptin (64%), and insulin (21%) levels. ARC NPY (23%) and DMN NPY (60%) were increased, while ARC POMC (40%) and PVN CRH (14%) were decreased. Calorically restricted exercising rats an half as much as ad libitum-fed exercising rats and had less visceral obesity than comparably restricted sedentary rats. When sedentary restricted rats were refed after 4 wk, they increased intake and regained the weight gain and adiposity of sedentary controls. While refed exercising rats and sedentary rats ate comparable amounts, refed exercising rats regained weight and adiposity only to the level of ad libitum-fed exercising rats. Thus exercise lowers the defended level of weight gain and adiposity without a compensatory increase in intake and with a very different profile of hypothalamic neuropeptide expression from calorically restricted rats. This may be due to exercise-related factors other than plasma insulin and leptin.  相似文献   

16.
Objective: Retinol binding protein‐4 (RBP4) has been reported to impair insulin sensitivity throughout the body. We investigated the relationship between serum RBP4 levels and adiposity indices as well as metabolic risk variables. Research Methods and Procedure: We recruited a total of 102 healthy women 21 to 67 years old. We assessed body composition by computed tomography and divided the study population into four groups based on body weight and visceral fat area (non‐obese without visceral adiposity, non‐obese with visceral adiposity, obese without visceral adiposity, and obese with visceral adiposity). Serum RBP4 levels were measured by radioimmunoassay. Results: Despite similar levels of total body fat, non‐obese women had lower systolic blood pressure, total cholesterol, triglyceride (TG), low‐density lipoprotein (LDL)‐cholesterol levels, insulin resistance indices, and RBP4 levels than non‐obese women with visceral adiposity and had higher high‐density lipoprotein‐cholesterol levels. Similarly, obese women without visceral adiposity had lower blood pressure, total cholesterol, TG levels, insulin resistance indices, and RBP4 levels than obese women with visceral adiposity. In addition, despite having increased body fat, obese women without visceral adiposity had lower TGs, insulin resistance indices, and serum RBP4 levels than non‐obese women with visceral adiposity. By step‐wise multiple regression analysis, visceral fat areas and LDL‐cholesterol levels independently affected RBP4 levels. Discussion: We determined that serum RBP4 levels are independently associated with visceral fat and LDL‐cholesterol levels. These results suggest that, irrespective of body weight, visceral obesity is an independent predictor of serum RBP4 levels, and RBP4 may represent a link between visceral obesity and cardiovascular disease.  相似文献   

17.
18.
19.
20.
High visceral adiposity and intramyocellular lipid levels (IMCL) are both associated with the development of type 2 diabetes. The relationship between visceral adiposity and IMCL levels was explored in diet- and glucocorticoid-induced models of insulin resistance. In the diet-induced model, lean and fa/fa Zucker rats were fed either normal or high-fat (HF) chow over 4 wk. Fat distribution, IMCL content in the tibialis anterior (TA) muscle (IMCL(TA)), and whole body insulin resistance were measured before and after the 4-wk period. The HF diet-induced increase in IMCL(TA) was strongly correlated with visceral fat accumulation and greater glucose intolerance in both groups. The increase in IMCL(TA) to visceral fat accumulation was threefold greater for fa/fa rats. In the glucocorticoid-induced model, insulin sensitivity was impaired with dexamethasone. In vivo adiposity and IMCL(TA) content measurements were combined with ex vivo analysis of plasma and muscle tissue. Dexamethasone treatment had minimal effects on visceral fat accumulation while increasing IMCL(TA) levels approximately 30% (P < 0.05) compared with controls. Dexamethasone increased plasma glucose by twofold and increased the saturated fatty acid content of plasma lipids [fatty acid (CH2)n/omegaCH3 ratio +15%, P < 0.05]. The lipid composition of the TA muscle was unchanged by dexamethasone treatment, indicating that the relative increase in IMCL(TA) observed in vivo resulted from a decrease in lipid oxidation. Visceral adiposity may influence IMCL accumulation in the context of dietary manipulations; however, a "causal" relationship still remains to be determined. Dexamethasone-induced insulin resistance likely operates under a different mechanism, i.e., independently of visceral adiposity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号