首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal studies on diabetic gastroparesis are limited by inability to follow gastric emptying changes in the same mouse. The study aim was to validate a nonlethal gastric emptying method in nonobese diabetic (NOD) LtJ mice, a model of type 1 diabetes, and study sequential changes with age and early diabetic status. The reliability and responsiveness of a [(13)C]octanoic acid breath test in NOD LtJ mice was tested, and the test was used to measure solid gastric emptying in NOD LtJ mice and nonobese diabetes resistant (NOR) LtJ mice. The (13)C breath test produced results similar to postmortem recovery of a meal. Bethanechol accelerated gastric emptying [control: 92 +/- 9 min; bethanechol: 53 +/- 3 min, mean half emptying time (T(1/2)) +/- SE], and atropine slowed gastric emptying (control: 92 +/- 9 min; atropine: 184 +/- 31 min, mean T(1/2) +/- SE). Normal gastric emptying (T(1/2)) in nondiabetic NOD LtJ mice (8-12 wk) was 91 +/- 2 min. Aging had differing effects on gastric emptying in NOD LtJ and NOR LtJ mice. Onset of diabetes was accompanied by accelerated gastric emptying during weeks 1-2 of diabetes. Gastric emptying returned to normal by weeks 3-5 with no delay. The [(13)C]octanoic acid breath test accurately measures gastric emptying in NOD LtJ mice, is useful to study the time course of changes in gastric emptying in diabetic NOD LtJ mice, and is able to detect acceleration in gastric emptying early in diabetes. Opposing changes in gastric emptying between NOD LtJ and NOR LtJ mice suggest that NOR LtJ mice are not good controls for the study of gastric emptying in NOD LtJ mice.  相似文献   

2.
The role of capsaicin-sensitive primary afferent sensory nerves in the regulation of gastrointestinal motility in human is not clarified yet. In this study, we investigated the effect of 400 microg capsaicin given intragastrically on gastric emptying measured by 13C-octanoic acid breath test in ten healthy human subjects. Four parameters of gastric emptying curves were taken into consideration: 1) maximum value of the curve, 2) time belonging to this maximum, 3) slope of the rising part of the curve and 4) time belonging to the 50% of the area under the curve. Administration of 400 microg capsaicin significantly increased the slope of gastric emptying curve (from 0.1 +/- 0.01 to 0.139 +/- 0.014 U x min(-1), P < 0.05) and significantly decreased the time belonging to the maximum value of emptying curve (from 150 +/- 18 to 75 +/- 12 min, P < 0.05) and the time belonging to the 50% of the area under the curve (from 112 +/- 15 to 99 +/- 14 min, P < 0.05). According to our results 400 microg capsaicin enhances gastric emptying rate in healthy human subjects.  相似文献   

3.
Lack of control of food intake, excess size, and frequency of meals are critical to the development of obesity. The stomach signals satiation postprandially and may play an important role in control of calorie intake. Sodium alginate (based on brown seaweed Laminaria digitata) is currently marketed as a weight loss supplement, but its effects on gastric motor functions and satiation are unknown. We evaluated effects of 10 days treatment with alginate or placebo on gastric functions, satiation, appetite, and gut hormones associated with satiety in overweight or obese adults. We conducted a randomized, 1:1, placebo‐controlled, allocation‐concealed study in 48 overweight or obese participants with excluded psychiatric comorbidity and binge eating disorder. All underwent measurements of gastric emptying (GE), fasting, and postprandial gastric volumes (GVs), postprandial satiation, calorie intake at a free choice meal and selected gut hormones after 1 week of alginate (three capsules vs. matching placebo per day, ingested 30 min before the main meal). Six capsules were ingested with water 30 min before the GE, GV, and satiation tests on days 8–10. There were no treatment group effects on GE or volumes, gut hormones (ghrelin, cholecystokinin (CCK), glucagon‐like peptide‐1 (GLP‐1), peptide YY (PYY)), satiation, total and macronutrient calorie intake at a free choice meal. There was no difference detected in results between obese and overweight patients. Alginate treatment for a period of 10 days showed no effect on gastric motor functions, satiation, appetite, or gut hormones. These results question the use of short‐term alginate treatment for weight loss.  相似文献   

4.
In an attempt to measure gastric emptying of carbohydrate solutions after exercise, we used the 13C acetate breath test to differentiate the gastric emptying of three approximately isoenergetic carbohydrate solutions (i.e. glucose, glucose polymer and sucrose) from each other and from water. On four separate occasions, six post-absorptive subjects walked on an inclined treadmill at 70% maximum oxygen uptake for 1 h and were then given 330 ml of one of the solutions in which 150 mg of sodium 1-[13C] acetate had been dissolved. Breath samples were collected at regular (2–30 min) intervals over the next 3.5 h for analysis of expired 13CO2 by isotope ratio mass spectrometry. When water was given, all subjects reached peak breath enrichment after 30 min, and had a mean (SE) gastric emptying time of 33.2 (1.6) min. Peak breath enrichment occurred later for sucrose and glucose polymer at 54.3 (3.1) min and 59.0 (2.1) min respectively (P < 0.01), and for glucose this was even later, at 62.3 (1.0) min (P < 0.05). Calculated gastric emptying times for sucrose and glucose polymer were almost identical [66.5 (2.5) and 69.8 (2.9) min respectively], whereas that for glucose was significantly slower [76.8 (3.2) min; P < 0.02], probably reflecting the effects of increased osmolality. The gastric emptying of all carbohydrates were significantly longer than for water (P < 0.01). These results show that in the post-exercise state the 13C acetate breath test can be used to differentiate the gastric emptying rates of water and carbohydrate solutions of different properties.  相似文献   

5.
The insulinotropic gut hormone gastric inhibitory polypeptide (GIP) has been demonstrated to inhibit gastric acid secretion and was proposed to possess "enterogastrone" activity. GIP effects on gastric emptying have not yet been studied. Fifteen healthy male volunteers (23.9 +/- 3.3 yr, body mass index 23.7 +/- 2.3 kg/m(2)) were studied with the intravenous infusion of GIP (2 pmol.kg(-1).min(-1)) or placebo, each administered to the volunteers on separate occasions from -30 to 360 min in the fasting state. At 0 min, a solid test meal (250 kcal containing [(13)C]sodium octanoate) was served. Gastric emptying was calculated from the (13)CO(2) exhalation rates in breath samples collected over 360 min. Venous blood was drawn in 30-min intervals for the determination of glucose, insulin, C-peptide, and GIP (total and intact). Statistical calculations were made by use of repeated-measures ANOVA and one-way ANOVA. During the infusion, GIP rose to steady-state concentrations of 159 +/- 15 pmol/l for total and 34 +/- 4 pmol/l for intact GIP (P < 0.0001). Meal ingestion further increased GIP concentrations in both groups, reaching peak levels of 265 +/- 20 and 82 +/- 9 pmol/l for total and 67 +/- 7 and 31 +/- 9 pmol/l for intact GIP during the administration of GIP and placebo, respectively (P < 0.0001). There were no differences in glucose, insulin, and C-peptide between the experiments with the infusion of GIP or placebo. Gastric half-emptying times were 120 +/- 9 and 120 +/- 18 min (P = 1.0, with GIP and placebo, respectively). The time pattern of gastric emptying was similar in the two groups (P = 0.98). Endogenous GIP secretion, as derived from the incremental area under the curve of plasma GIP concentrations in the placebo experiments, did not correlate to gastric half-emptying times (r(2) = 0.15, P = 0.15 for intact GIP; r(2) = 0.21, P = 0.086 for total GIP). We conclude that gastric emptying does not appear to be influenced by GIP. The secretion of GIP after meal ingestion is not suppressed by its exogenous administration. The lack of effect of GIP on gastric emptying underlines the differences between GIP and the second incretin glucagon-like peptide 1.  相似文献   

6.
After a meal, the proximal stomach relaxes probably through the activation of nitrergic neurons in the gastric wall. Nitric oxide-induced smooth muscle relaxation involves activation of soluble guanylate cyclase, with cGMP production, which is then degradated by phosphodiesterase-5 (PDE-5). The aim of this study was to investigate the effect of sildenafil, a selective PDE-5 inhibitor, on fasting and postprandial proximal gastric volume and on gastric emptying rates in humans. A gastric barostat was used to study gastric compliance and perception to isobaric distension in healthy subjects before and after placebo (n = 13) or sildenafil, 50 mg (n = 15). In 10 healthy subjects, two gastric barostat studies were performed in randomized order to study the effect of placebo or sildenafil on postprandial gastric relaxation. Similarly, solid and liquid gastric emptying rates were studied in 12 healthy subjects. Sildenafil significantly increased fasting intragastric volume (141 +/- 15 vs. 163 +/- 15 ml, P < 0.05) and volumes of first perception. Sildenafil induced a higher and prolonged gastric relaxation either at 30 min (357 +/- 38 vs. 253 +/- 42 ml, P < 0.05) or 60 min (348 +/- 49 vs. 247 +/- 38 ml, P < 0.05) after the meal. Sildenafil did not alter solid half-emptying time but significantly delayed liquid emptying (43 +/- 4 vs. 56 +/- 4 min, P < 0.01). In conclusion, sildenafil significantly increases postprandial gastric volume and slows liquid emptying rate, confirming that meal-induced accommodation in humans involves the activation of a nitrergic pathway. The effect of sildenafil on gastric fundus suggests a therapeutic potential for phosphodiesterase inhibitors in patients with impaired gastric accommodation.  相似文献   

7.
Ghrelin has been shown to accelerate gastric emptying in animals where its effect appeared mediated through the vagus nerve. We aimed to verify the gastrokinetic capacity of ghrelin in human. Patients with gastroparesis attributed to a neural dysregulation by diabetes (n = 5) or surgical vagotomy (n = 1) were evaluated. The emptying of a test meal (420 kcal) was determined by the C13 octanoic acid breath test. Saline or synthetic ghrelin 1-4 microg/kg were given in 1 min bolus at the end of the meal. T-lag and T-1/2 were shorter during ghrelin than during saline administration [33 +/- 5 min versus 65 +/- 14 min (p < 0.01) and 119 +/- 6 min versus 173 +/- 38 min (p < 0.001)]. Ghrelin injection therefore accelerated gastric emptying of a meal in humans even in presence of a deficient gastric innervation.  相似文献   

8.
Although the α-glucosidase inhibitor miglitol (MG) has been reported to have anorexigenic effects, the mechanism remains to be elucidated. The objective of this study was to explore the effects of MG on appetite in relation to concomitant changes in postprandial gut hormone levels. This randomized open-label crossover study included 20 healthy volunteers. The effects of 50 mg MG on glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and ghrelin levels were assessed in conjunction with a simultaneous determination of appetite scores using visual analogue scales (VAS) over 3 h after the ingestion of a 592 kcal test cookie. Additionally, the gastric emptying rate (GER) was measured using breath 13CO? appearance in 10 subjects. 12 subjects were administered 50 mg MG thrice a day for 1 week, and alterations of the gut hormone levels and the VAS scores for appetite were evaluated. MG pre-administration resulted in a significant enhancement of GLP-1 and PYY responses induced by the cookie ingestion. Following MG administration, ghrelin level declined at 1 h, with a persistent suppression during the postprandial phase in contrast to the restoration to the basal level without MG. Furthermore, MG pre-administration suppressed appetite and maintained satiety evaluated using a VAS rating with concomitant inhibition of GER after cookie ingestion. One-week administration of MG did not influence either gut hormone levels before a meal or VAS rating during a whole day. These observations suggest that MG exerts an anorexigenic effects with concomitant alterations of gut hormone secretions and gastric emptying after meal ingestion.  相似文献   

9.
Preprocessed fatty foods often contain calories added as a fat emulsion stabilized by emulsifiers. Emulsion stability in the acidic gastric environment can readily be manipulated by altering emulsifier chemistry. We tested the hypothesis that it would be possible to control gastric emptying, CCK release, and satiety by varying intragastric fat emulsion stability. Nine healthy volunteers received a test meal on two occasions, comprising a 500-ml 15% oil emulsion with 2.5% of one of two emulsifiers that produced emulsions that were either stable (meal A) or unstable (meal B) in the acid gastric environment. Gastric emptying and gallbladder volume changes were assessed by MRI. CCK plasma levels were measured and satiety scores were recorded. Meal B layered rapidly owing to fat emulsion breakdown. The gastric half-emptying time of the aqueous phase was faster for meal B (72 +/- 13 min) than for meal A (171 +/- 35 min, P < 0.008). Meal A released more CCK than meal B (integrated areas, respectively 1,095 +/- 244 and 531 +/- 111 pmol.min.l(-1), P < 0.02), induced a greater gallbladder contraction (P < 0.02), and decreased postprandial appetite (P < 0.05), although no significant differences were observed in fullness and hunger. We conclude that acid-stable emulsions delayed gastric emptying and increased postprandial CCK levels and gallbladder contraction, whereas acid-instability led to rapid layering of fat in the gastric lumen with accelerated gastric emptying, lower CCK levels, and reduced gallbladder contraction. Manipulation of the acid stability of fat emulsion added to preprocessed foods could maximize satiety signaling and, in turn, help to reduce overconsumption of calories.  相似文献   

10.
Ingested fat releases CCK, causes gastric relaxation, delays gastric emptying, and limits meal size; however, the mechanistic link among these actions has not been established. Fatty acid release of CCK is chain-length sensitive; dodecanoic acid (C12) induces greater CCK release than decanoic acid (C10). The effect of C12 or C10 on tolerance to subsequent intragastric infusion of liquid was determined in healthy subjects, with and without the CCK(1) receptor antagonist dexloxiglumide. Gastric wall relaxation after either fatty acid was assessed by graded volume distension and by barostat; gastric emptying was measured by gastric aspiration and by a [(13)C]octanoic acid breath technique. C12 released more CCK (mean plasma CCK after vehicle, 4.7 +/- 0.8 pM; C10, 4.8 +/- 0.3 pM; C12, 8 +/- 1.2 pM; P < 0.05 C12 vs. C10 or vehicle) and reduced the volume of water (and of 5 and 25% glucose solutions) delivered at maximum tolerance compared with C10 or vehicle (volume of water tolerated after vehicle, 1,535 +/- 164 ml; C10, 1,335 +/- 160 ml; C12, 842 +/- 103 ml; P < 0.05 C12 vs. C10 or vehicle); this effect was abolished by dexloxiglumide. Intragastric volumes were always similar at the limit of tolerance, and, whereas gastric relaxation occurred to similar degrees after the fatty acids, its duration was longer after C12, which also induced a longer delay in half-gastric emptying [t(1/2)(min) after vehicle, 53 +/- 2; C10, 67 +/- 3; C12, 88 +/- 7; P < 0.05 C12 vs. C10 or vehicle]. In conclusion, ingestion of a CCK-releasing fatty acid reduces the tolerated volume of liquid delivered into the stomach, primarily via a CCK(1) receptor-mediated delay in gastric emptying.  相似文献   

11.
Gastric emptying is a determinant of the postprandial glycemic and cardiovascular responses to oral carbohydrate. We evaluated the effects of a solid meal on gastric emptying and the glycemic and cardiovascular responses to oral glucose in healthy older subjects. Ten subjects aged 72.1 +/- 1.9 yr were studied. Each subject had measurements of gastric emptying, blood glucose, serum insulin, blood pressure, and heart rate after ingestion of a 50-g glucose drink (300 ml) with (mixed meal) or without (liquid only) a solid meal (300 g ground beef). Gastric emptying of liquid was initially slightly more rapid (P < 0.05) after the mixed meal compared with liquid only at 5 min (92.0 +/- 1.5 vs. 96.0 +/- 1.3%) and much slower (P < 0.05) after 120 min. The time to peak blood glucose was less (39.0 +/- 4.0 vs. 67.5 +/- 10.3 min; P < 0.01) and blood glucose subsequently lower (P < 0.01) after the mixed meal. The increase in serum insulin was greater (P < 0.001) after the mixed meal. Blood pressure fell (P < 0.05) in the first 30 min, with no difference between the two meals. Increase in heart rate after both meals (P < 0.005), was greater (P < 0.05) after the mixed meal. The presence of a noncarbohydrate solid meal had discrepant effects on early and subsequent emptying of a nutrient liquid, which affects postprandial glycemia and increased heart rate.  相似文献   

12.
Central nervous system action of TRH to stimulate gastric emptying in rats   总被引:1,自引:0,他引:1  
The effects of intracisternal injection of TRH on gastric emptying of a liquid meal was investigated in 24 h fasted rats using the phenol red method. Intracisternal injection of TRH, RX 77368, or [N-Val2]-TRH, an analog devoid of TSH-releasing activity, 5 min prior to a meal, stimulated gastric emptying measured 20 min later. TRH action was dose dependent (1-100 ng), and rapid in onset. The calculated time for emptying half of the meal was decreased from 16 +/- 3 min (control group) to 4 +/- 1 min (TRH 30 ng). The stable analog, RX 77368, unlike TRH, stimulated gastric emptying when the meal was given 60 min after peptide injection. Intravenous injection of atropine (2.5 micrograms) inhibited and that of carbachol (1 microgram) stimulated gastric emptying whereas i.v. injection of TRH (0.1-1 microgram) had no effect. Vagotomy but not adrenalectomy reversed the increase in gastric emptying induced by intracisternal TRH. Atropine blocked the stimulatory effect of TRH and carbachol. These results demonstrate that TRH acts within the brain to stimulate gastric emptying through vagus-dependent and cholinergic pathways whereas alterations of adrenal and pituitary-thyroid secretion do not play an important role.  相似文献   

13.
Duodenal lipid exacerbates gastrointestinal sensations during gastric distension. Using luminal application of the local anesthetic benzocaine, we investigated the role of intestinal receptors in the induction of these sensations. Nine healthy subjects were studied on five occasions, during which isotonic saline or 20% lipid (2 kcal/min), combined with (duodenal or jejunal) 0.75% benzocaine or vehicle at 2.5 ml/min, was infused intraduodenally before and during gastric distension. Intragastric pressures and volumes, gastrointestinal sensations, and plasma CCK levels were determined. Duodenal lipid combined with vehicle increased gastric volume (in ml: saline, -10 +/- 18; lipid/vehicle, 237 +/- 30) and plasma CCK [mean levels (pmol/l): saline, 2.0 +/- 0. 2; lipid/vehicle, 8.0 +/- 1.6] and, during distensions, induced nausea (scores: saline, 3 +/- 2: lipid/vehicle, 58 +/- 19) and decreased pressures at which fullness and discomfort occurred. Duodenal but not jejunal benzocaine attenuated the effect of lipid on gastric volume, plasma CCK, and nausea during distension (135 +/- 38 and 216 +/- 40 ml, 4.6 +/- 0.6 pmol/l and not assessed, and 37 +/- 12 and 64 +/- 21 for lipid + duodenal benzocaine and lipid + jejunal benzocaine, respectively) and on pressures for sensations. In conclusion, intestinal receptors modulate gastrointestinal sensations associated with duodenal lipid and gastric distension. There is also the potential for local neural mechanisms to regulate CCK release and thereby reduce afferent activation indirectly.  相似文献   

14.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

15.
During exercise, less additional CO2 is stored per kilogram body weight in children than in adults, suggesting that children have a smaller capacity to store metabolically produced CO2. To examine this, tracer doses of [13C]bicarbonate were administered orally to 10 children (8-12 yr) and 12 adults (25-40 yr) at rest. Washout of 13CO2 in breath was analyzed to estimate recovery of tracer, mean residence time (MRT), and size of CO2 stores. CO2 production (VCO2) was also measured breath by breath using gas exchange techniques. Recovery did not differ significantly between children [73 +/- 13% (SD)] and adults (71 +/- 9%). MRT was shorter in children (42 +/- 7 min) compared with adults (66 +/- 15 min, P less than 0.001). VCO2 per kilogram was higher in the children (5.4 +/- 0.9 ml.min-1.kg-1) compared with adults (3.1 +/- 0.5, P less than 0.0001). Tracer estimate of CO2 production was correlated to VCO2 (r = 0.86, P less than 0.0001) and when corrected for mean recovery accurately predicted the VCO2 to within 3 +/- 14%. There was no difference in the estimate of resting CO2 stores between children (222 +/- 52 ml CO2/kg) and adults (203 +/- 42 ml CO2/kg). We conclude that orally administered [13C]bicarbonate can be used to assess CO2 transport dynamics. The data do not support the hypothesis of lower CO2 stores under resting conditions in children.  相似文献   

16.
To test the hypothesis that children store less CO2 than adults during exercise, we measured breath 13CO2 washout dynamics after oral bolus of [13C]bicarbonate in nine children [8 +/- 1 (SD) yr, 4 boys] and nine (28 +/- 6 yr, 5 males) adults. Gas exchange [O2 uptake and CO2 production (Vco2)] was measured breath by breath during rest and during light (80% of the anaerobic threshold) intermittent exercise. Breath samples were obtained for subsequent analysis of 13CO2 by isotope ratio mass spectrometry. The tracer estimate of Vco2 was highly correlated to Vco2 measured by gas exchange (r = 0.97, P < 0.0001). The mean residence time was shorter in children (50 +/- 5 min) compared with adults (69 +/- 7 min, P < 0.0001) at rest and during exercise (children, 35 +/- 7 min; adults, 50 +/- 11 min, P < 0.001). The estimate of stored CO2 (using mean Vco2 measured by gas exchange and mean residence time derived from tracer washout) was not statistically different at rest between children (254 +/- 36 ml/kg) and adults (232 +/- 37 ml/kg). During exercise, CO2 stores in the adults (304 +/- 46 ml/kg) were significantly increased over rest (P < 0.001), but there was no increase in children (mean exercise value, 254 +/- 38 ml/kg). These data support the hypothesis that CO2 distribution in response to exercise changes during the growth period.  相似文献   

17.
Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436 ± 189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65 ± 113 and 70 ± 66 mg kg-1 h-1 respectively). Dietary water facilitated food processing and increased daily dry matter intake of trout when fed four times a day. When only one satiation meal per day was allowed, dietary water had no effect. It is concluded from this work that, in addition to gastric volume, a short-term limitation on the size of satiation meals in the rainbow trout is the availability of water to moisturize the food and thus to promote gastric digestion and emptying.  相似文献   

18.
It is widely accepted that gastric parameters such as gastric distention provide a direct negative feedback signal to inhibit eating; moreover, gastric and intestinal signals have been reported to synergize to promote satiation. However, there are few human data exploring the potential interaction effects of gastric and intestinal signals in the short-term control of appetite and the secretion of satiation peptides. We performed experiments in healthy subjects receiving either a rapid intragastric load or a continuous intraduodenal infusion of glucose or a mixed liquid meal. Intraduodenal infusions (3 kcal/min) were at rates comparable with the duodenal delivery of these nutrients under physiological conditions. Intraduodenal infusions of glucose elicited only weak effects on appetite and the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). In contrast, identical amounts of glucose delivered intragastrically markedly suppressed appetite (P < 0.05) paralleled by greatly increased plasma levels of GLP-1 and PYY (≤3-fold, P < 0.05). Administration of the mixed liquid meal showed a comparable phenomenon. In contrast to GLP-1 and PYY, plasma ghrelin was suppressed to a similar degree with both intragastric and intraduodenal nutrients. Our data confirm that the stomach is an important element in the short-term control of appetite and suggest that gastric and intestinal signals interact to mediate early fullness and satiation potentially by increased GLP-1 and PYY secretions.  相似文献   

19.
Serotonin type 3 (5-HT(3)) receptors have been shown to participate in the negative-feedback control of food intake. We previously reported that cholecystokinin (CCK)-induced suppression of food intake is partly mediated through 5-HT(3) receptors when rats were tested on a preferred liquid diet, but whether such an effect occurs when they are tested on a solid maintenance diet is unknown. In the present study, we examined the effects of ondansetron, a selective 5-HT(3) antagonist, on CCK-induced suppression of solid chow intake. Intraperitoneal administration of ondansetron significantly attenuated 30- and 60-min CCK-induced reduction of food intake, with suppression being completely reversed by 120 min. It is not known whether 5-HT(3) receptors directly mediate CCK-induced satiation or whether their participation depends on CCK acting as part of a feedback cascade to inhibit ongoing intake. Because CCK-induced inhibition of sham feeding does not depend on additive gastric/postgastric-feedback signals, we examined the ability of ondansetron to reverse CCK-induced satiation in sham-feeding rats. Ondansetron did not attenuate reduction of sham feeding by CCK, suggesting that ondansetron does not directly antagonize CCK-satiation signals. CCK suppresses real feeding through a delay in gastric emptying. Ondansetron could attenuate CCK-induced reduction of food intake by reversing CCK-induced inhibition of gastric emptying. We found that blockade of 5-HT(3) receptors attenuates CCK-induced inhibition of gastric emptying of a solid meal, as well as saline and glucose loads. We conclude that 5-HT(3) receptors mediate CCK-induced satiation through indirect mechanisms as part of a feedback cascade involving inhibition of gastric emptying.  相似文献   

20.
The present study was undertaken to investigate how the activation of gastric mechanoreceptors by distension of the stomach in conscious gastric fistula rats influences gastric emptying; and the roles of capsaicin sensitive vagal afferent fibres and the 5-HT3, GRP and CCK-A receptors involved in mediating these responses. To activate mechanoreceptors by non-nutrient dependent pathways, methylcellulose in saline was used to distend the stomach (5 cm H2O) and the subsequent emptying of saline was examined immediately, and at 3, 5 and 10 min following distension. Prior distension delayed the subsequent emptying of saline instilled into the stomach compared with non-distended controls (2.28+/-0.09 ml/5 min; P < 0.001). Topical application of capsaicin, completely abolished the distension-induced inhibition of gastric emptying when compared with vehicle treated rats (2.82+/-0.09 vs. 2.38+/-0.04 ml/5 min; P < 0.001). Peripheral administration of a GRP antagonist (2258 U89UJ, 1 mg/kg), and a 5-HT3 antagonist (BRL4369UA, 50 microg/kg) significantly reversed (2.56+/-0.14 ml/5 min; P < 0.05 and 2.61+/-0.07 ml/5 min; P < 0.01; respectively) the delay in gastric emptying induced by distension. When the rats were treated with the CCK-A antagonist, gastric emptying of saline following distension was also significantly facilitated (2.56+/-0.07 ml/5 min; P < 0.001). In contrast, the CCK-B/gastrin receptor antagonist had no significant effect on the distension induced delay in gastric emptying (1.95+/-0.12 ml/5 min). The present results suggest that gastric distension in conscious gastric fistula rats delays gastric emptying by activating capsaicin-sensitive extrinsic afferent nerve fibres. Moreover, the results also indicate that distension-induced mechanisms involve GRP, 5-HT3 and CCK-A receptors, but not CCK-B receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号