首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overactivity of the endocannabinoid system (ECS) has been linked to abdominal obesity and other risk factors for cardiovascular disease and type 2 diabetes. Conversely, administration of cannabinoid receptor type 1 (CB1) antagonists reduces adiposity in obese animals and humans. This effect is only in part secondary to the anorectic action of CB1 agonists. In order to assess the actions of CB1 antagonism on glucose homeostasis, diet‐induced obese (DIO) rats received the CB1 antagonist rimonabant (10 mg/kg, intraperitoneally (IP)) or its vehicle for 4 weeks, or were pair‐fed to the rimonabant‐treated group for the same length of time. Rimonabant treatment transiently reduced food intake, while inducing body weight loss throughout the study. Rats receiving rimonabant had significantly less body fat and circulating leptin compared to both vehicle and pair‐fed groups. Rimonabant, but not pair‐feeding, also significantly decreased circulating nonesterified fatty acid (NEFA) and triacylglycerol (TG) levels, and reduced TG content in oxidative skeletal muscle. Although no effects were observed during a glucose tolerance test (GTT), rimonabant restored insulin sensitivity to that of chow‐fed, lean controls during an insulin tolerance test (ITT). Conversely, a single dose of rimonabant to DIO rats had no acute effect on insulin sensitivity. These findings suggest that in diet‐induced obesity, chronic CB1 antagonism causes weight loss and improves insulin sensitivity by diverting lipids from storage toward utilization. These effects are independent of the anorectic action of the drug.  相似文献   

2.
The endocannabinoids have been recognized as an important system involved in the regulation of energy balance. Rimonabant (SR141716), a selective inverse agonist of cannabinoid receptor 1 (CB1), has been shown to cause weight loss. However, its suppressive impact on food intake is transient, indicating a likely additional effect on energy expenditure. To examine the effects of rimonabant on components of energy balance, we administered rimonabant or its vehicle to diet-induced obese (DIO) C57BL/6 mice once daily for 30 days, by oral gavage. Rimonabant induced a persistent weight reduction and a significant decrease in body fatness across all depots. In addition to transiently reduced food intake, rimonabant-treated mice exhibited decreased apparent energy absorption efficiency (AEAE), reduced metabolizable energy intake (MEI), and increased daily energy expenditure (DEE) on days 4-6 of treatment. However, these effects on the energy budget had disappeared by days 22-24 of treatment. No chronic group differences in resting metabolic rate (RMR) or respiratory quotient (RQ) (P > 0.05) were detected. Rimonabant treatment significantly increased daily physical activity (PA) levels both acutely and chronically. The increase in PA was attributed to elevated activity during the light phase but not during the dark phase. Taken together, these data suggested that rimonabant caused a negative energy balance by acting on both energy intake and expenditure. In the short term, the effect included both reduced intake and elevated PA but the chronic effect was only on increased PA expenditure.  相似文献   

3.
Although many feeding protocols induce obesity, few use multiple foods to analyze diet selection within a single group of animals. To this end, we describe a protocol using time-limited access to a dessert that induces hyperphagia and body weight gain while allowing simple analysis of diet selection. Female retired breeder Sprague-Dawley rats were provided with ad libitum access to standard moist chow (1.67 kcal/g) and daily 8-h nocturnal access to either a sugar gel (SG; 0.31 kcal/g) or sugar fat whip (SFW; 7.35 kcal/g) for 15 days, and food intake and body weight were measured daily. Rats given SFW reduced moist chow intake but not enough to compensate for the large amount of calories consumed from SFW, and thus gained weight. We use this SFW overconsumption protocol to investigate the hypothesis that cannabinoid (CB)1 receptor antagonists reduce caloric intake by selectively decreasing consumption of palatable foods. In two experiments, female retired breeder Sprague-Dawley rats were injected with either Rimonabant (1 mg/kg ip) or vehicle (equal parts polyethylene glycol and saline, 1 ml/kg ip) for 7 days, or one of three doses of AM251 (0.3, 1.0, or 3.0 mg/kg ip), or vehicle for 15 days; food intake and body weight were measured daily. Both Rimonabant and AM251 decreased 24-h caloric intake, but the reduction was specific to a decrease in SFW consumption. This supports the hypothesis that these CB1 receptor antagonists impact feeding by modulating the perception of palatability.  相似文献   

4.
In order to advise regarding the religious practice of withholding food, we studied the metabolic changes after successive 15 days of recurrent fasting of 13 hours every day in maternal plasma and liquor amnii of obese normal gravids and gestational diabetics in their third trimester. There were no significant differences between those who fasted that period for one day prior to elective cesarean section (CS) and those who fasted the same period repeatedly for 15 days. The fasted gravids had significant rises in glycerol, beta-hydroxybutyrate (BOHB) and nonesterified fatty acids (NEFA) (P less than 0.0001, P less than 0.005 and P less than 0.01, respectively) in maternal plasma, compared to unfasted gravid groups and ungravid fasted group. No significant metabolic difference was found in the liquor amnii withdrawn from fasted and unfasted groups. The influence of such short term of starvation on the fetal metabolic profile was studied in the cord blood during cesarean section (CS). Glucose, glycerol and NEFA were significantly lower in arterial than in venous cord plasma (P less than 0.05, P less than 0.01 and P less than 0.01, respectively) indicating that the fetus could utilize these substrates. Positive correlation was found between the levels of BOHB in the mother and venous cord plasma on the one hand and their levels in the arterial cord plasma and liquor amnii on the other hand implying that this substrate passes unutilized through the fetus to the liquor amnii. A pregnant woman in the third trimester should not withhold food for long periods.  相似文献   

5.
Nucleic acids have been known to have biological effects on the digestive and immune systems, although less attention has been paid to the action on metabolism. In the present study, in order to investigate the effects of oral ingestion of uridylic acid (5'-uridine monophosphate, 5'-UMP) on hormonal and metabolic levels, we measured changes in the plasma concentrations of leptin, insulin, glucose, non-esterified fatty acids (NEFA), weights of the liver and abdominal fat and fat accumulation in the liver and M. gastrocnemius in male rats. Intragastric administration of 5'-UMP via a stomach tube at a dose of 44 mg/day for 7 days slightly (P=0.098) blunted the body weight gain without causing a significant change in food intake. The administration significantly reduced the plasma concentrations of glucose (P=0.004) and NEFA (P=0.004), whereas it significantly increased (P=0.03) plasma leptin concentration. The weights of perirenal (but not epididymal) fat (P=0.083) and the liver (P=0.061) were slightly increased. The triacylglyceride concentration in M. gastrocnemius was slightly increased (P=0.097), although the muscle weight was not significantly changed (P=0.197). In summary, acute oral administration of 5'-UMP was effective in the rat in reducing plasma concentrations of glucose and NEFA, an effect that was accompanied by an elevated plasma leptin concentration.  相似文献   

6.
Because the CB1 receptor antagonist SR141716 was previously reported to modulate food intake in rodents, we studied its efficacy in reducing obesity in a diet-induced obesity (DIO) model widely used for research on the human obesity syndrome. During a 5-wk treatment, SR141716 (10 mg. kg(-1). day(-1) orally) induced a transient reduction of food intake (-48% on week 1) and a marked but sustained reduction of body weight (-20%) and adiposity (-50%) of DIO mice. Furthermore, SR141716 corrected the insulin resistance and lowered plasma leptin, insulin, and free fatty acid levels. Most of these effects were present, but less pronounced at 3 mg. kg(-1). day(-1). In addition to its hypophagic action, SR141716 may influence metabolic processes as the body weight loss of SR141716-treated mice was significantly higher during 24-h fasting compared with vehicle-treated animals, and when a 3-day treatment was compared with a pair feeding. SR141716 had no effect in CB1 receptor knockout mice, which confirmed the implication of CB1 receptors in the activity of the compound. These findings suggest that SR141716 has a potential as a novel anti-obesity treatment.  相似文献   

7.
We studied whether cannabinoid receptor (CB1) blockade with rimonabant has an anti-inflammatory effect in obese mice, and whether this effect depends on weight loss and/or diet consumption. High-fat diet (HFD)-induced obese mice were treated orally with rimonabant (HFD-R) or vehicle (HFD-V) for 4 weeks. Paired-feeding was conducted in two additional groups of obese mice to achieve either the same body weight (HFD-BW) or the same HFD intake (HFD DI) as HFD-R. All these groups of mice were maintained on HFD throughout, with mice on normal diet (ND) throughout as lean controls. Rimonabant treatment of obese mice induced marked diet-intake reduction and weight loss during the first week, which was followed by maintenance of low body weight but not diet-intake reduction. Lower HFD intake was required to reach the same degree of weight loss in HFD-BW. HFD-DI had similar weight loss initially, but then started to gain weight, reaching a higher body weight than HFD-R. Despite the same degree of weight loss, HFD-R had less fat mass and lower adipogenic gene expression than HFD-BW. Compared to HFD-V or HFD-DI, HFD-R had reduced inflammation in adipose tissue (AT) and/or liver indicated primarily by lower monocyte chemoattractant protein-1 (MCP-1) levels. However, MCP-1 levels were not significantly different between HFD-R and HFD-BW. In vitro incubation of rimonabant with AT explants did not change MCP-1 levels. Thus, rimonabant induced weight loss in obese mice by diet-intake-dependent and -independent fashions. Rimonabant decreased inflammation in obese mice, possibly through a primary effect on weight reduction.  相似文献   

8.
Cannabinoid receptors and the endocannabinoids anandamide and 2-arachidonoylglycerol have been suggested to regulate food intake in several animal phyla. Orthologs of the mammalian cannabinoid CB(1) and CB(2) receptors have been identified in fish. We investigated the presence of this endocannabinoid system in the brain of the goldfish Carassius auratus and its role in food consumption. CB(1)-like immunoreactivity was distributed throughout the goldfish brain. The prosencephalon showed strong CB(1)-like immunoreactivity in the telencephalon and the inferior lobes of the posterior hypothalamus. Endocannabinoids were detected in all brain regions of C. auratus and an anandamide-hydrolysing enzymatic activity with features similar to those of mammalian fatty acid amide hydrolase was found. Food deprivation for 24 h was accompanied by a significant increase of anandamide, but not 2-arachidonoylglycerol, levels only in the telencephalon. Anandamide caused a dose-dependent effect on food intake within 2 h of intraperitoneal administration to satiated fish and significantly enhanced or reduced food intake at low (1 pg/g body weight) or intermediate (10 pg/g) doses, respectively, the highest dose tested (100 pg/g) being inactive. We suggest that endocannabinoids might variously contribute to adaptive responses to food shortage in fish.  相似文献   

9.
Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions.  相似文献   

10.
The goal of this study was to determine whether administration of the CB(1) cannabinoid receptor antagonist rimonabant would alter fatty acid flux in nonhuman primates. Five adult baboons (Papio Sp) aged 12.1 ± 4.7 yr (body weight: 31.9 ± 2.1 kg) underwent repeated metabolic tests to determine fatty acid and TG flux before and after 7 wk of treatment with rimonabant (15 mg/day). Animals were fed ad libitum diets, and stable isotopes were administered via diet (d(31)-tripalmitin) and intravenously ((13)C(4)-palmitate, (13)C(1)-acetate). Plasma was collected in the fed and fasted states, and blood lipids were analyzed by GC-MS. DEXA was used to assess body composition and a hyperinsulinemic euglycemic clamp used to assess insulin-mediated glucose disposal. During the study, no changes were observed in food intake, body weight, plasma, and tissue endocannabinoid concentrations or the quantity of liver-TG fatty acids originating from de novo lipogenesis (19 ± 6 vs. 16 ± 5%, for pre- and posttreatment, respectively, P = 0.39). However, waist circumference was significantly reduced 4% in the treated animals (P < 0.04), glucose disposal increased 30% (P = 0.03), and FFA turnover increased 37% (P = 0.02). The faster FFA flux was consistent with a 43% reduction in these fatty acids used for TRL-TG synthesis (40 ± 3 vs. 23 ± 4%, P = 0.02) and a twofold increase in TRL-TG turnover (1.5 ± 0.9 vs. 3.1 ± 1.4 μmol·kg(-1)·h(-1), P = 0.03). These data support the potential for a strong effect of CB(1) receptor antagonism at the level of adipose tissue, resulting in improvements in fasting turnover of fatty acids at the whole body level, central adipose storage, and significant improvements in glucose homeostasis.  相似文献   

11.
The cannabinoid CB1 receptor antagonist rimonabant (SR 141716) produces a sustained decrease in body weight on a background of a transient reduction in food intake. An increase in energy expenditure has been implicated, possibly mediated via peripheral endocannabinoid system; however, the role of the central endocannabinoid system is unclear. The present study investigates this role. Rimonabant (10 mg/kg IP) was administered for 21 days to rats surgically implanted with biotelemetry devices to measure temperature in the interscapular brown adipose tissue (BAT). BAT temperature as a putative measure of thermogenesis in the BAT, physical activity, body weight, food intake, as well as changes in UCP1 messenger RNA (mRNA) and protein were measured. In addition, role of the CNS in mediating these actions of rimonabant was determined in rats where the BAT was sympathetically denervated. As expected, chronic administration of rimonabant significantly reduced body weight for the entire treatment period despite only a transient decrease in food intake. There was a profound increase in BAT temperature, particularly during the dark phase of each circadian cycle throughout the treatment period. A corresponding increase in uncoupling protein (UCP1) was also observed following chronic rimonabant treatment. The rimonabant‐induced elevation in BAT temperature and decrease in body weight were significantly attenuated following denervation, indicating an involvement of the CNS. These findings suggest that the long‐term weight loss associated with rimonabant treatment is due at least in part to an elevation in energy expenditure, represented here by elevated temperature recorded in the BAT, which is mediated primarily by the central endocannabinoid system.  相似文献   

12.
The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) β and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of CB1 receptors could work towards restoration of the metabolic adaption imposed by diet.  相似文献   

13.
To understand the function of the feeding-stimulatory peptide, galanin (GAL), in eating and body weight regulation, the present experiments tested the effects of both acute and chronic injections of this peptide into the paraventricular nucleus (PVN) of rats. With food absent during the test, acute injection of GAL (300 pmol/0.3 microl) significantly increased phosphofructokinase activity in muscle, suggesting enhanced capacity to metabolize carbohydrate, and reduced circulating glucose levels. It also decreased beta-hydroxyacyl-CoA dehydrogenase activity in muscle, indicating reduced fat oxidation, while increasing circulating non-esterified fatty acids (NEFA) and lipoprotein lipase activity in adipose tissue (aLPL). Chronic PVN injections of GAL (300 pmol/0.3 microl/injection) versus saline over 7-10 days significantly stimulated daily caloric intake and increased the weight of four dissected fat depots by 30-40%. These effects, accompanied by elevated levels of leptin, triglycerides, NEFA and aLPL activity, were evident only in rats on a diet with at least 35% fat. Thus, by favoring carbohydrate over fat metabolism in muscle and reversing hyperglycemia, PVN GAL may have a function in counteracting the metabolic disturbances induced by a high-fat diet. As a consequence of these actions, GAL can promote the partitioning of lipids away from oxidation in muscle towards storage in adipose tissue.  相似文献   

14.
Y Tang  G Ho  Y Li  MA Hall  RL Hills  SC Black  Y Liang  KT Demarest 《PloS one》2012,7(8):e42134
An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R) in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO) AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week) or control ASO Isis-141923 (25 mg/kg/week) via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05). Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05). Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.  相似文献   

15.
PYY (3-36) is postulated to act as a satiety factor in the gut-hypothalamic pathway to inhibit food intake and body weight gain in humans and rodent models. We determined the effect of 14-day continuous intravenous infusion of PYY (3-36) (175 microg/kg/day) on food intake and body weight gain in colectomized male Wistar rats. Colectomy caused an increase in plasma PYY levels at 7 days which was reduced at 14 days but still significantly elevated compared to basal preoperative values. Animals treated with continuous PYY (3-36) infusion had significantly elevated PYY levels compared to the control group throughout the whole experiment, but showed a similar pattern of food intake and body weight gain. In conclusion, although continuous intravenous infusion is the most physiologically relevant method to mimic high postprandial PYY levels, we did not observe any significant effect on food intake and body weight gain in non-food deprived colectomized animals. This suggests that PYY has, if at all, only a minor role in food intake in rats.  相似文献   

16.
Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100 μg/kg body weight, ip) or repeated injections of LPS over 6 days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40 μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200 ng/μl in 5 μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.  相似文献   

17.
In eight insulin dependent diabetic patients treated by continuous subcutaneous insulin infusion (1.1 +/- 0.2 U/h), the levels (measured hourly from 23 h to 05 h) of blood glucose, non esterified fatty acids (NEFA), glycerol and 3-OH-butyrate (3-OH-B) have been correlated to the circulating levels of free insulin (FIRI), glucagon, growth hormone or cortisol, in two experimental conditions: A. Insulin being infused as usual (physiological FIRI levels) and B. Progressively declining FIRI levels (insulin infusion arrested at 23 h). In condition A, blood glucose levels correlated significantly to both insulin and glucagon; NEFA, glycerol and 3OH-B correlated only to insulin. In condition B, blood glucose was significantly correlated to insulin but not to glucagon while NEFA, glycerol and 3-OH-B were significantly correlated to both hormones but not to growth hormone or cortisol. Therefore, on the metabolic deterioration that follows insulin withdrawal, growth hormone and cortisol seem to play a minor role, the main role being played by the decrease in circulating insulin levels and to a lesser extent by the increase in glucagon levels.  相似文献   

18.
Low testosterone and estradiol concentrations are predictive for the development of the metabolic syndrome in men and women, respectively. The aim of this study was to investigate the influence of sex hormone deficiency on food intake, body weight, body composition and glucose metabolism in male Göttingen minipigs.Five adult male Göttingen minipigs were studied before castration (pre-cast), 10-18 days (post-cast 1) and 10-11 weeks (post-cast 2) after castration. Parameters of interest were food intake, body weight, body fat percentage and sex hormone concentrations. Furthermore glucose tolerance, glucagon suppression, insulin resistance, beta cell function and disposition index were evaluated by oral and intravenous glucose tolerance tests.Castration led to almost complete disappearance of circulating testosterone and estradiol and secondarily to increased food intake, body weight and body fat percentage. Ten-eighteen days sex hormone deficiency (post-cast 1) did not significantly change any of the investigated metabolic parameters compared to pre-cast levels. Ten weeks after castration (post-cast 2) significant insulin resistance, glucose intolerance and hyperglucagonemia was found, and the beta cell function and the disposition index both were decreased.In conclusion, castration-induced sex hormone deficiency in male Göttingen minipigs results in hyperphagia, obesity and disturbed glucose metabolism, which are some of the features typical for the human metabolic syndrome.  相似文献   

19.
This study tests the hypothesis that the metabolic and endocrine shift characterizing the phase II-phase III transition during prolonged fasting is related to a decrease in fatty acid (FA) oxidation. Changes in plasma concentrations of various metabolites and hormones and in lipolytic fluxes, as determined by continuous infusion of [2-(3)H]glycerol and [1-(14)C]palmitate, were examined in vivo in spontaneously fasting king penguins in the phase II status (large fat stores, protein sparing) before, during, and after treatment with mercaptoacetate (MA), an inhibitor of FA oxidation. MA induced a 7-fold decrease in plasma beta-hydroxybutyrate and a 2- to 2.5-fold increase in plasma nonesterified fatty acids (NEFA), glycerol, and triacylglycerols. MA also stimulated lipolytic fluxes, increasing the rate of appearance of NEFA and glycerol by 60-90%. This stimulation might be partly mediated by a doubling of circulating glucagon, with plasma insulin remaining unchanged. Plasma glucose level was unaffected by MA treatment. Plasma uric acid increased 4-fold, indicating a marked acceleration of body protein breakdown, possibly mediated by a 2.5-fold increase in circulating corticosterone. Strong similarities between these changes and those observed at the phase II-phase III transition in fasting penguins support the view that entrance into phase III, and especially the end of protein sparing, is related to decreased FA oxidation, rather than reduced NEFA availability. MA could be therefore a useful tool for understanding mechanisms underlying the phase II-phase III transition in spontaneously fasting birds and the associated stimulation of feeding behavior.  相似文献   

20.
Peripheral neuropathy develops in human subjects with prediabetes and metabolic syndrome before overt hyperglycemia. The contributions of impaired glucose tolerance and insulin signaling, hypertriglyceridemia and/or increased nonesterified fatty acids (NEFA), and hypercholesterolemia to this condition remain unknown. Niacin and its derivatives alleviate dyslipidemia with a minor effect on glucose homeostasis. This study evaluated the roles of impaired glucose tolerance versus dyslipidemia in prediabetic neuropathy using Zucker fatty (fa/fa) rats and the niacin derivative acipimox, as well as the interplay of hypertriglyceridemia, increased NEFA, and oxidative-nitrosative stress. Sixteen-week-old Zucker fatty rats with impaired glucose tolerance, obesity, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and increased NEFA displayed sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. Acipimox (100 mg kg(-1) day(-1), 4 weeks) reduced serum insulin, NEFA, and triglyceride concentrations without affecting glucose tolerance and hypercholesterolemia. It alleviated sensory nerve conduction velocity deficit and changes in behavioral measures of sensory function and corrected oxidative-nitrosative stress, but not impaired insulin signaling, in peripheral nerve. Elevated NEFA increased total and mitochondrial superoxide production and NAD(P)H oxidase activity in cultured human Schwann cells. In conclusion, hypertriglyceridemia and/or increased NEFA concentrations cause prediabetic neuropathy through oxidative-nitrosative stress. Lipid-lowering agents and antioxidants may find a use in the management of this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号