首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted gene disruption studies have established that the c-Jun NH(2)-terminal kinase (JNK) signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis. Here we demonstrate that activated JNK is sufficient to induce rapid cytochrome c release and apoptosis. However, activated JNK fails to cause death in cells deficient of members of the Bax subfamily of proapoptotic Bcl2-related proteins. Furthermore, exposure to stress fails to activate Bax, cause cytochrome c release, and induce death in JNK-deficient cells. These data demonstrate that proapoptotic members of the Bax protein subfamily are essential for JNK-dependent apoptosis.  相似文献   

2.
The synthetic retinoid-related molecule CD437-induced apoptosis in human epithelial airway respiratory cells: the 16HBE bronchial cell line and normal nasal epithelial cells. CD437 caused apoptosis in S-phase cells and cell cycle arrest in S phase. Apoptosis was abolished by caspase-8 inhibitor z-IETD-fmk which preserved S-phase cells but was weakly inhibited by others selective caspase-inhibitors, indicating that caspase-8 activation was involved. z-VAD and z-IETD prevented the nuclear envelope fragmentation but did not block the chromatin condensation. The disruption of mitochondrial transmembrane potential was also induced by CD437 treatment. The translocation of Bax to mitochondria was demonstrated, as well as the release of cytochrome c into the cytosol and of apoptosis-inducing factor (AIF) translocated into the nucleus. z-VAD and z-IETD did not inhibit mitochondrial depolarization, Bax translocation or release of cytochrome c and AIF from mitochondria. These results suggest that CD437-induced apoptosis is executed by two converging pathways. AIF release is responsible for chromatin condensation, the first stage of apoptotic cell, via a mitochondrial pathway independent of caspase. But final stage of apoptosis requires the caspase-8-dependent nuclear envelope fragmentation. In addition, using SP600125, JNK inhibitor, we demonstrated that CD437 activates the JNK-MAP kinase signaling pathway upstream to mitochondrial and caspase-8 pathways. Conversely, JNK pathway inhibition, which suppresses S-phase apoptosis, did not prevent cell cycle arrest within S phase, confirming that these processes are triggered by distinct mechanisms.  相似文献   

3.
Mao X  Yu CR  Li WH  Li WX 《Cell research》2008,18(8):879-888
This study examined the signaling events induced by shikonin that lead to the induction of apoptosis in Bcr/ Abl-positive chronic myelogenous leukemia (CML) cells (e.g., K562, LAMA84). Treatment of K562 cells with shikonin (e.g., 0.5 pM) resulted in profound induction of apoptosis accompanied by rapid generation of reactive oxygen species (ROS), striking activation of c-Jun-N-terminal kinase (JNK) and p38, marked release of the mitochondrial proteins cytochrome c and Smac/DIABLO, activation of caspase-9 and -3, and cleavage of PARP. Scavenging of ROS completely blocked all of the above-mentioned events (i.e., JNK and p38 phosphorylation, cytochrome c and Smac/DIABLO release, caspase and PARP cleavage, as well as the induction of apoptosis) following shikonin treatment. Inhibition of JNK and knock-down of JNK1 significantly attenuated cytochrome c release, caspase cleavage and apoptosis, but did not affect shikonin-mediated ROS production. Additionally, inhibition of caspase activation completely blocked shikonin-induced apoptosis, but did not appreciably modify shikonin-mediated cytochrome c release or ROS generation. Altogether, these findings demonstrate that shikonin-induced oxidative injury operates at a proximal point in apoptotic signaling cascades, and subsequently activates the stress-related JNK pathway, triggers mitochondrial dysfunction, cytochrome c release, and caspase activation, and leads to apoptosis. Our data also suggest that shikonin may be a promising agent for the treatment of CML, as a generator of ROS.  相似文献   

4.
The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide.  相似文献   

5.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

6.
Release of mitochondrial cytochrome c (cyt c) is an early and common event during apoptosis. Previous studies showed that the loss of cyt c triggered superoxide production by mitochondria and contributed to the oxidation of cellular thiol-disulfide redox state. In this study, we tested whether loss of the functional electron transport chain due to depleting mitochondrial DNA (mtDNA) would affect this redox-signaling mechanism during apoptosis. Results showed that cyt c release and caspase activation in response to staurosporine treatment were preserved in cells lacking mitochondrial DNA (rho0 cells). However, unlike the case with rho+ cells, in which a dramatic oxidation of intracellular glutathione (GSH) occurred after mitochondrial cyt c release, the thiol-disulfide redox state in apoptotic rho0 cells remained largely unchanged. Thus, mitochondrial signaling of caspase activation can be separated from the bioenergetic function, and mitochondrial respiratory chain is the principal source of ROS generation in staurosporine-induced apoptosis.  相似文献   

7.
Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis   总被引:16,自引:0,他引:16  
Elevated serum free fatty acids (FFAs) and hepatocyte lipoapoptosis are features of non-alcoholic fatty liver disease. However, the mechanism by which FFAs mediate lipoapoptosis is unclear. Because JNK activation is pivotal in both the metabolic syndrome accompanying non-alcoholic fatty liver disease and cellular apoptosis, we examined the role of JNK activation in FFA-induced lipoapoptosis. Multiple hepatocyte cell lines and primary mouse hepatocytes were treated in culture with monounsaturated fatty acids and saturated fatty acids. Despite equal cellular steatosis, apoptosis and JNK activation were greater during exposure to saturated versus monounsaturated FFAs. Inhibition of JNK, pharmacologically as well as genetically, reduced saturated FFA-mediated hepatocyte lipoapoptosis. Cell death was caspase-dependent and associated with mitochondrial membrane depolarization and cytochrome c release indicating activation of the mitochondrial pathway of apoptosis. JNK-dependent lipoapoptosis was associated with activation of Bax, a known mediator of mitochondrial dysfunction. As JNK can activate Bim, a BH3 domain-only protein capable of binding to and activating Bax, its role in lipoapoptosis was also examined. Small interfering RNA-targeted knock-down of Bim attenuated both Bax activation and cell death. Collectively the data indicate that saturated FFAs induce JNK-dependent hepatocyte lipoapoptosis by activating the proapoptotic Bcl-2 proteins Bim and Bax, which trigger the mitochondrial apoptotic pathway.  相似文献   

8.
Irreversible mitochondrial permeability transition and the resultant cytochrome c release signify the commitment of a cell to apoptotic death. However, the role of transient MPT (tMPT) because of flickering opening of the mitochondrial permeability transition pore remains elusive. Here we show that tMPT and the associated superoxide flashes (i.e. tMPT/superoxide flashes) constitute early mitochondrial signals during oxidative stress-induced apoptosis. Selenite (a ROS-dependent insult) but not staurosporine (a ROS-independent insult) stimulated an early and persistent increase in tMPT/superoxide flash activity prior to mitochondrial fragmentation and a global ROS rise, independently of Bax translocation and cytochrome c release. Selectively targeting tMPT/superoxide flash activity by manipulating cyclophilin D expression or scavenging mitochondrial ROS markedly impacted the progression of selenite-induced apoptosis while exerting little effect on the global ROS response. Furthermore, the tMPT/superoxide flash served as a convergence point for pro- and anti-apoptotic regulation mediated by cyclophilin D and Bcl-2 proteins. These results indicate that tMPT/superoxide flashes act as early mitochondrial signals mediating the apoptotic response during oxidative stress, and provide the first demonstration of highly efficacious local mitochondrial ROS signaling in deciding cell fate.  相似文献   

9.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase-activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N-terminus, generating a potent proapoptotic 18-kDa fragment (Bax/p18). Both the calpain-mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane-enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and fragmentation of DNA. Unlike the full-length Bax, Bax/p18 did not interact with the antiapoptotic Bcl-2 protein in the mitochondrial fraction of drug-treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and caspase-3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase-3-mediated apoptosis that was not blocked by overexpression of Bcl-2 protein. Therefore, Bax/p18 has a cytochrome c-releasing activity that promotes cell death independent of Bcl-2. Finally, Bcl-2 overexpression inhibited etoposide-induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution.  相似文献   

10.
The initiating events that lead to the induction of apoptosis mediated by the chemopreventative agent beta-phenyethyl isothiocyanate (PEITC) have yet to be elucidated. In the present investigation, we examined the effects of PEITC on mitochondrial function and apoptotic signaling in hepatoma HepG2 cells and isolated rat hepatocyte mitochondria. PEITC induced a conformational change in Bax leading to its translocation to mitochondria in HepG2 cells. Bax accumulation was associated with a rapid loss of mitochondrial membrane potential (Deltapsim), impaired respiratory chain enzymatic activity, release of mitochondrial cytochrome c and the activation of caspase-dependent cell death. Caspase inhibition did not prevent Bax translocation, the release of cytochrome c or the loss of Deltapsim, but blocked caspase-mediated DNA fragmentation and cell death. To determine whether PEITC dependent Bax translocation caused loss of Deltapsim by the activation of the mitochondrial permeability transition (MPT), we examined the effects of PEITC in isolated rat hepatocyte mitochondria. Interestingly, PEITC did not induce MPT in isolated rat mitochondria. Accordingly, using pharmacological inhibitors of MPT namely cyclosporine A, trifluoperazine and Bongkrekic acid we were unable to block PEITC mediated apoptosis in HepG2 cells, this suggesting that mitochondrial permeablisation is a likely consequence of Bax dependent pore formation. Taken together, our data suggest that mitochondria are a key target in PEITC induced apoptosis in HepG2 cells via the pore forming ability of pro-apoptotic Bax.  相似文献   

11.
Tumor necrosis factor (TNF)-alpha-mediated death signaling induces oligomerization of proapoptotic Bcl-2 family member Bax into a high molecular mass protein complex in mitochondrial membranes. Bax complex formation is associated with the release of cytochrome c, which propagates death signaling by acting as a cofactor for caspase-9 activation. The adenovirus Bcl-2 homologue E1B 19K blocks TNF-alpha-mediated apoptosis by preventing cytochrome c release, caspase-9 activation, and apoptosis of virus-infected cells. TNF-alpha induces E1B 19K-Bax interaction and inhibits Bax oligomerization. Oligomerized Bax may form a pore to release mitochondrial proteins, analogous to the homologous pore-forming domains of bacterial toxins. E1B 19K can also bind to proapoptotic Bak, but the functional significance is not known. TNF-alpha signaling induced Bak-Bax interaction and both Bak and Bax oligomerization. E1B 19K was constitutively in a complex with Bak, and blocked the Bak-Bax interaction and oligomerization of both. The TNF-alpha-mediated cytochrome c and Smac/DIABLO release from mitochondria was inhibited by E1B 19K expression in adenovirus-infected cells. Since either Bax or Bak is essential for death signaling by TNF-alpha, the interaction between E1B 19K and both Bak and Bax may be required to inhibit their cooperative or independent oligomerization to release proteins from mitochondria which promote caspase activation and cell death.  相似文献   

12.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
Encephalitis induced by reovirus serotype 3 (T3) strains results from the apoptotic death of infected neurons. Extrinsic apoptotic signaling is activated in reovirus-infected neurons in vitro and in vivo, but the role of intrinsic apoptosis signaling during encephalitis is largely unknown. Bax plays a key role in intrinsic apoptotic signaling in neurons by allowing the release of mitochondrial cytochrome c. We found Bax activation and cytochrome c release in neurons following infection of neonatal mice with T3 reoviruses. Bax(-/-) mice infected with T3 Abney (T3A) have reduced central nervous system (CNS) tissue injury and decreased apoptosis, despite viral replication that is similar to that in wild-type (WT) Bax(+/+) mice. In contrast, in the heart, T3A-infected Bax(-/-) mice have viral growth, caspase activation, and injury comparable to those in WT mice, indicating that the role of Bax in pathogenesis is organ specific. Nonmyocarditic T3 Dearing (T3D)-infected Bax(-/-) mice had delayed disease and enhanced survival compared to WT mice. T3D-infected Bax(-/-) mice had significantly lower viral titers and levels of activated caspase 3 in the brain despite unaffected transneuronal spread of virus. Cytochrome c and Smac release occurred in some reovirus-infected neurons in the absence of Bax; however, this was clearly reduced compared to levels seen in Bax(+/+) wild-type mice, indicating that Bax is necessary for efficient activation of proapoptotic mitochondrial signaling in infected neurons. Our studies suggest that Bax is important for reovirus growth and pathogenesis in neurons and that the intrinsic pathway of apoptosis, mediated by Bax, is important for full expression of disease, CNS tissue injury, apoptosis, and viral growth in the CNS of reovirus-infected mice.  相似文献   

14.
15.
Poliovirus (PV) is the causal agent of paralytic poliomyelitis, a disease that involves the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through an apoptotic process. However, mechanisms by which PV induces cell death in neuronal cells remain unclear. Here, we demonstrate that PV infection of neuronal IMR5 cells induces cytochrome c release from mitochondria and loss of mitochondrial transmembrane potential, both of which are evidence of mitochondrial outer membrane permeabilization. PV infection also activates Bax, a proapoptotic member of the Bcl-2 family; this activation involves its conformational change and its redistribution from the cytosol to mitochondria. Neutralization of Bax by vMIA protein expression prevents cytochrome c release, consistent with a contribution of PV-induced Bax activation to mitochondrial outer membrane permeabilization. Interestingly, we also found that c-Jun NH(2)-terminal kinase (JNK) is activated soon after PV infection and that the PV-cell receptor interaction alone is sufficient to induce JNK activation. Moreover, the pharmacological inhibition of JNK by SP600125 inhibits Bax activation and cytochrome c release. This is, to our knowledge, the first demonstration of JNK-mediated Bax-dependent apoptosis in PV-infected cells. Our findings contribute to our understanding of poliomyelitis pathogenesis at the cellular level.  相似文献   

16.
Tumor necrosis factor (TNF) is a potent activator of the nuclear factor-kappaB (NF-kappaB) pathway that leads to up-regulation of anti-apoptotic proteins. Hence, TNF induces apoptosis in the presence of inhibitors of protein or RNA synthesis. We report that a novel triterpenoid, 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid (CDDO) inhibits NF-kappaB-mediated gene expression at a step after translocation of activated NF-kappaB to the nucleus. This effect appears specific for the NF-kappaB pathway as CDDO does not inhibit gene expression induced by the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA). CDDO in combination with TNF caused a dramatic increase in apoptosis in ML-1 leukemia cells that was associated with activation of caspase-8, cleavage of Bid, translocation of Bax, cytochrome c release, and caspase-3 activation. Experiments with caspase inhibitors demonstrated that caspase-8 was an initiator of this pathway. TNF also induced a transient activation of c-Jun N-terminal kinase (JNK), which upon addition of CDDO was converted to a sustained activation. The activation of JNK was also dependent on caspase-8. Sustained activation of JNK is frequently pro-apoptotic, yet inhibition of JNK did not prevent Bax translocation or cytochrome c release, demonstrating its lack of involvement in CDDO/TNF-induced apoptosis. Apoptosis was acutely induced by CDDO/TNF in every leukemia cell line tested including those that overexpress Bcl-x(L), suggesting that the mitochondrial pathway is not required for apoptosis by this combination. These results suggest that the apoptotic potency of the CDDO/TNF combination occurs through selective inhibition of NF-kappaB-dependent anti-apoptotic proteins, bypassing potential mitochondrial resistance mechanisms, and thus may provide a basis for the development of novel approaches to the treatment of leukemia.  相似文献   

17.
Vaccinia virus, the prototypic member of the orthopoxvirus genus, encodes the mitochondrial-localized protein F1L that functions to protect cells from apoptotic death and inhibits cytochrome c release. We previously showed that F1L interacts with the pro-apoptotic Bcl-2 family member Bak and inhibits activation of Bak following an apoptotic stimulus (Wasilenko, S. T., Banadyga, L., Bond, D., and Barry, M. (2005) J. Virol. 79, 14031-14043). In addition to Bak, the pro-apoptotic protein Bax is also capable of initiating cytochrome c release suggesting that vaccinia virus infection could also inhibit Bax activity. Here we show that F1L inhibits the activity of the pro-apoptotic protein Bax by inhibiting oligomerization and N-terminal activation of Bax. F1L expression also inhibited the subcellular redistribution of Bax to the mitochondria and the insertion of Bax into the outer mitochondrial membrane. The ability of F1L to inhibit Bax activation does not require Bak, because F1L expression inhibited cytochrome c release and Bax activation in Bak-deficient cells. No interaction between Bax and F1L was detected during infection, suggesting that F1L functions upstream of Bax activation. Notably, F1L was capable of interacting with the BH3-only protein BimL as shown by co-immunoprecipitation, and F1L expression inhibited apoptosis induced by BimL. These studies suggest that, in addition to interacting with the pro-apoptotic protein Bak, F1L also functions to indirectly inhibit the activation of Bax, likely by interfering with the pro-apoptotic activity of BH3-only proteins such as BimL.  相似文献   

18.
Ultraviolet light-induced apoptosis can be caused by DNA damage but also involves immediate-early cell death cascades characteristic of death receptor signaling. Here we show that the UV light-induced apoptotic signaling pathway is unique, targeting Bax activation at the mitochondrial membrane independent of caspase-8 or cathepsin D activity. Cells deficient in acid sphingomyelinase (ASMase) do not show UV light-induced Bax activation, cytochrome c release, or apoptosis. In ASMase-deficient cells, the apoptotic UV light response is restored by stable or transient expression of human ASMase. Bax conformational change in ASMase(-/-) cells is also caused by synthetic C(16)-ceramide acting on intact cells or isolated mitochondria. The results suggest that UV light-triggered ASMase activation is essentially required for Bax conformational change leading to mitochondrial release of pro-apoptotic factors like cytochrome c and Smac.  相似文献   

19.
Mitochondria serve as a pivotal component of the apoptotic cell death machinery. However, cells that lack mitochondrial DNA (rho(0) cells) retain apparently normal apoptotic signaling. In the present study, we examined mitochondrial mechanisms of apoptosis in rho(0) osteosarcoma cells treated with staurosporine. Immunohistochemistry revealed that rho(0) cells maintained a normal cytochrome c distribution in mitochondria even though these cells were deficient in respiration. Upon staurosporine treatment, cytochrome c was released concomitantly with activation of caspase 3 and loss of mitochondrial membrane potential (Deltapsi(m)). After mitochondrial loss of cytochrome c, rho(0) cells underwent little change in glutathione (GSH) redox potential whereas a dramatic oxidation in GSH/glutathione disulfide (GSSG) pool occurred in parental rho(+) cells. These results show that mitochondrial signaling of apoptosis via cytochrome c release was preserved in cells lacking mtDNA. However, intracellular oxidation that normally accompanies apoptosis was lost, indicating that the mitochondrial respiratory chain provides the major source of redox signaling in apoptosis.  相似文献   

20.
Wu KL  Hsu C  Chan JY 《Journal of neurochemistry》2007,101(6):1552-1566
The mitochondrion participates in caspase-independent or caspase-dependent apoptotic pathways through the release of apoptosis-inducing factor or cytochrome c. Whether both mitochondrial apoptotic cascades are triggered in the injured spinal cord remains unknown. Here, we demonstrated that neurons, astrocytes and microglia in spinal segments proximal to a complete spinal cord transection underwent two phases of apoptotic cell death. The early phase of high-molecular weight (HMW) DNA fragmentation was associated with nuclear translocation of apoptosis-inducing factor, reduction in mitochondrial respiratory chain enzyme activity and decrease in cellular ATP concentration. The delayed phase of low-molecular weight (LMW) DNA fragmentation was accompanied by cytosolic release of cytochrome c , activation of caspases 9 and 3, and resumption of mitochondrial respiratory functions and ATP contents. Microinfusion of coenzyme Q10, an electron carrier in mitochondrial respiratory chain, into the epicenter of the transected spinal cord attenuated both phases of induced apoptosis, and reversed the elicited mitochondrial dysfunction, bioenergetic failure, and activation of apoptosis-inducing factor, cytochrome c , or caspases 9 and 3. We conclude that mitochondrial dysfunction after spinal cord transection represents the initiating cellular events that trigger the sequential activation of apoptosis-inducing factor-dependent and caspase-dependent signaling cascades, leading to apoptotic cell death in the injured spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号