首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To examine differences in body size, composition, and distribution of body fat among Hispanic, white, and Asian adolescents. Research Methods and Procedures: This included cross‐sectional data from the baseline sample of the Adequate Calcium Today trial. Participants included 180 Asian, 234 Hispanic, and 325 white girls 11.8 ± 0.05 years of age from Arizona, California, Hawaii, Indiana, Ohio, and Nevada. Anthropometric and DXA measurements (Lunar Prodigy) were standardized across sites. Tanner pubertal stage was self‐selected from line drawings. Physical activity was assessed by a validated questionnaire. Comparisons between ethnic groups were examined using contrasts in the context of a general linear model. Results: Controlling for pubertal stage and study site only, Asians weighed less than Hispanics and were shorter than Hispanics and whites. Controlling for pubertal stage, height, weight, and study site, Asians had shorter leg lengths, smaller waist circumference, longer trunk lengths, more lean mass, less total fat mass, and less gynoid fat mass than Hispanics and whites; Asians had larger bitrochanteric width than whites; Asians had smaller DXA‐derived android fat mass than Hispanics; and whites had smaller mean android/gynoid fat ratio than Hispanics. However, whites had a smaller android/gynoid fat ratio than both Asians and Hispanics in a model that adjusted for ethnicity, pubertal stage, bitrochanteric width, waist circumference, trunk length, log of physical activity, and study site, which explained 77% of the variation. Discussion: Ethnic differences in fat distribution are partially explained by differences in skeletal dimensions.  相似文献   

2.
It has been widely assumed that for a given BMI, Asians have higher percent body fat (PBF) than whites, and that the BMI threshold for defining obesity in Asians should be lower than the threshold for whites. This study sought to test this assumption by comparing the PBF between US white and Vietnamese women. The study was designed as a comparative cross‐sectional investigation. In the first study, 210 Vietnamese women ages between 50 and 85 were randomly selected from various districts in Ho Chi Minh City (Vietnam). In the second study, 419 women of the same age range were randomly selected from the Rancho Bernardo Study (San Diego, CA). In both studies, lean mass (LM) and fat mass (FM) were measured by dual‐energy X‐ray absorptiometry (DXA) (QDR 4500; Hologic). PBF was derived as FM over body weight. Compared with Vietnamese women, white women had much more FM (24.8 ± 8.1 kg vs. 18.8 ± 4.9 kg; P < 0.0001) and greater PBF (36.4 ± 6.5% vs. 35.0 ± 6.2%; P = 0.012). However, there was no significant difference in PBF between the two groups after matching for BMI (35.1 ± 6.2% vs. 35.0 ± 5.7%; P = 0.87) or for age and BMI (35.6 ± 5.1% vs. 35.8 ± 5.9%; P = 0.79). Using the criteria of BMI ≥30, 19% of US white women and 5% of Vietnamese women were classified as obese. Approximately 54% of US white women and 53% of Vietnamese women had their PBF >35% (P = 0.80). Although white women had greater BMI, body weight, and FM than Vietnamese women, their PBF was virtually identical. Further research is required to derive a more appropriate BMI threshold for defining obesity for Asian women.  相似文献   

3.
Objective: Excess visceral adipose tissue (VAT) is recognized as an important risk factor for the development of coronary heart disease and type 2 diabetes. Several studies have reported less VAT in African Americans compared with whites. As little is known about the levels of VAT in Asians, we compared whole‐body VAT in Asian Americans with European Americans. Research Methods and Procedures: VAT was measured using whole‐body multislice magnetic resonance imaging in 54 women (18 Asian Americans, 36 European Americans) and 53 men (19 Asian Americans, 34 European Americans) with body mass index (measured in kilograms per square meter) < 30. Data were analyzed by multiple regression modeling. Results: Asian American women had higher log‐transformed VAT compared with European American women (p < 0.05), after adjusting for age and total body fat. There was a significant age by race interaction such that race differences in VAT were most evident over the age of 30 years. No differences in VAT could be detected between Asian American and European American men, even after adjusting for potential covariates, including total adiposity. %Discussion: These data are the first to demonstrate higher amounts of VAT in healthy Asian Americans, a finding that suggests normative VAT values or standards derived from whites may not be applicable to Asians.  相似文献   

4.
Our objective was to examine whether elevated α‐lactalbumin (αlac) protein intake compared to elevated supra sustained milk protein (SSP) and sustained milk protein (SP) intake results into a difference in body weight and body composition over a 6‐month energy‐restriction intervention. Body weight, body composition, resting energy expenditure (REE), satiety and blood‐ and urine‐parameters of 87 subjects (BMI 31 ± 5 kg/m2 and fat percentage 40 ± 8%) were assessed before and after daily energy intakes of 100, 33, and 67% for 1, 1, and 2 months respectively (periods 1, 2, and 3), with protein intake from meal replacements and 2 months of 67% with ad libitum protein intake additional to the meal replacements (period 4). The diets resulted in 0.8 ± 0.3 g/kg body mass (BM) for SP and significant higher protein intake (24‐h nitrogen) of 1.2 ± 0.3 and 1.0 ± 0.3 g/kgBM for SSP and αlac (P < 0.05). Body weight and fat percentage was decreased in all groups after 6 months (SP ?7 ± 5 kg and ?5 ± 3%; SSP ?6 ± 3 kg and ?5 ± 3%; αlac ?6 ± 4 kg and ?4 ± 4%, P < 0.001; there was no significant group by time difference). Furthermore, sparing of fat‐free mass (FFM) and preservation of REE in function of FFM during weight loss was not significantly different between the αlac‐group and the SSP‐ and SP‐groups. In conclusion, the efficacy of αlac in reduction of body weight and fat mass (FM), and preservation of FFM does not differ from the efficacy of similar daily intakes of milk protein during 6 months of energy restriction.  相似文献   

5.
It is controversial whether weight loss reduces resting energy expenditure (REE) to a different magnitude in black and white women. This aim of this study was to determine whether changes in REE with weight loss were different between black and white postmenopausal women, and whether changes in body composition (including regional lean and fat mass) were associated with REE changes within each race. Black (n = 26) and white (n = 65) women (age = 58.2 ± 5.4 years, 25 < BMI < 40 kg/m2) completed a 20‐week weight‐loss intervention. Body weight, lean and fat mass (total body, limb, and trunk) via dual‐energy X‐ray absorptiometry, and REE via indirect calorimetry were measured before and after the intervention. We found that baseline REE positively correlated with body weight, lean and fat mass (total, limb, and trunk) in white women only (P < 0.05 for all). The intervention decreased absolute REE in both races similarly (1,279 ± 162 to 1,204 ± 169 kcal/day in blacks; 1,315 ± 200 to 1,209 ± 185 kcal/day in whites). REE remained decreased after adjusting for changes in total or limb lean mass in black (1,302–1,182 kcal/day, P = 0.043; 1,298–1,144 kcal/day, P = 0.006, respectively), but not in white, women. Changes in REE correlated with changes in body weight (partial r = 0.277) and fat mass (partial r = 0.295, 0.275, and 0.254 for total, limb, and trunk, respectively; P < 0.05) independent of baseline REE in white women. Therefore, with weight loss, REE decreased in proportion to the amount of fat and lean mass lost in white, but not black, women.  相似文献   

6.
Objective: This study was conducted to evaluate the association of total and central adiposity with serum cardiovascular disease (CVD) risk factors in lean and obese Portuguese children and adolescents. Research Methods and Procedures: A total of 87 girls (13.2 ± 1.6 years old, 29.9 ± 6.4% body fat [mean ± SD]) and 72 boys (13.2 ± 1.6 years old, 20.8 ± 9.9% body fat) volunteered for the study. Whole‐body composition and fat distribution, from DXA and anthropometry, and serum lipids, lipoproteins, and apolipoproteins were evaluated. Results: The sum of three trunk skinfolds (STS) was highly correlated with total trunk fat mass measured by DXA (p < 0.001). Body mass index, DXA‐measured percentage of body fat, trunk fat mass, STS, and the waist‐to‐height ratio were generally found to be associated with triacylglycerol, the ratio of total cholesterol (TC) to high density lipoprotein‐cholesterol (HDL‐C), low density lipoprotein‐cholesterol (LDL‐C), and apolipoprotein B levels, (significant age‐adjusted r between 0.16 and 0.27, p < 0.05). Body mass index, STS, and the waist circumference were also associated with HDL‐C (p < 0.05), whereas no body composition variable significantly correlated with TC or apolipoproteins A‐I. The STS was significantly correlated with HDL‐C (p < 0.01), TC/HDL‐C (p < 0.05), and apolipoproteins A‐I (p < 0.05) independently of whole‐body fatness. Obese subjects (n = 73) had higher TC, LDL‐C, TC/HDL‐C, and apolipoprotein B than did non‐obese subjects (n = 86), and significant associations between central adiposity and some lipid variables (triacylglycerol and HDL‐C) were found in obese children and adolescents that were not present in leaner individuals. Discussion: DXA‐ and anthropometry‐based whole‐body and central fat measures are associated with serum CVD risk factors in Portuguese boys and girls. Obese children and adolescents have a poorer lipid profile than do their leaner counterparts. Trunk skinfolds, which are easy to obtain even in large samples, predict CVD risk factors to the same extent as DXA‐based variables, in some cases, independently of total fatness.  相似文献   

7.
Objective: To investigate sexual dimorphism and race differences in fat distribution (android/gynoid) before and during puberty. Research Methods and Procedures: Fat distribution was measured by skinfold thickness and DXA in healthy African‐American, Asian, and white subjects (n = 920), divided into pre‐, early, and late pubertal groups. Results: Gynoid fat masses adjusted for covariates were lower in late pubertal compared with prepubertal boys, but were not consistently greater in late pubertal compared with prepubertal girls. Progression of sex‐specific fat distribution with increasing maturation was present in Asians only. Among African‐American and white subjects, early pubertal boys had greater gynoid fat mass compared with the prepubertal group, whereas early pubertal girls had less gynoid fat mass compared with the prepubertal group. Sexual dimorphism in fat distribution was present in all pubertal groups, except among whites at early puberty. Among girls, Asians had lower gynoid fat than whites and African Americans in all pubertal groups. Among boys, Asians had less gynoid fat by DXA in early puberty and late puberty. Discussion: Comparison among races demonstrated differences in sexual dimorphism and sex‐specific fat distribution with progression in pubertal group. However, in all race groups, the fat distribution of late pubertal boys was more “male” or “android” than prepubertal boys, but late pubertal girls did not differ consistently from prepubertal girls. These findings suggested that the greater sexual dimorphism of fat distribution in late puberty compared with prepuberty may be attributable to larger changes in boys with smaller changes in girls.  相似文献   

8.
Objective: The aim of this study was to develop and compare two DXA‐based four‐compartment [body weight = body cell mass (BCM) + extracellular fluid (ECF) + extracellular solids (ECS) + fat] cellular level models. Research Methods and Procedures: Total body potassium (TBK) model: BCM from TBK by whole‐body counting—ECFTBK = LST ? [BCMTBK + 0.73 × osseous mineral (Mo)]. Bromide model: ECF from sodium bromide dilution—BCMBROMIDE = LST ? (ECFBROMIDE + 0.73 × Mo); Mo and LST measurements came from DXA. The two approaches were evaluated in 99 healthy men and 118 women. Results: BCM estimates were highly correlated (r = 0.97, p < 0.001), as were ECF estimates (r = 0.87, p < 0.001); a small statistically significant mean difference was present (mean ± SD; BCMTBK model, 30.4 ± 8.9 kg; BCMBROMIDE, 31.4 ± 9.3 kg; Δ = 1.0 ± 2.8 kg; p < 0.001; ECFTBK, 18.5 ± 4.2 kg; ECFBROMIDE, 17.5 ± 3.6 kg; Δ = 1.0 ± 2.8 kg; p < 0.001). A high correlation (r = 0.97, p < 0.001) and good agreement (38.9 ± 9.5 vs. 38.9 ± 9.5 kg; Δ = 0.0 ± 2.4 kg; p = 0.39) were present between TBW, derived as the sum of intracellular water from TBK and ECW from bromide, and measured TBW by 2H2O dilution. Discussion: Two developed four‐compartment cellular level DXA models, one of which is appropriate for use in most clinical and research settings, provide comparable results and are applicable for BCM and ECF estimation of subject groups with hydration disturbances.  相似文献   

9.
Background: Although the BMI is widely used as a measure of adiposity, it is a measure of excess weight, and its association with body fatness may differ across racial or ethnic groups. Objective: To determine whether differences in body fatness between white, black, Hispanic, and Asian children vary by BMI‐for‐age, and whether the accuracy of overweight (BMI‐for‐age ≥ Centers for Disease Control and Prevention (CDC) 95th percentile) as an indicator of excess adiposity varies by race/ethnicity. Methods and Procedures: Total body dual‐energy X‐ray absorptiometry (DXA) provided estimates of %body fat among 1,104 healthy 5‐ to 18‐year‐olds. Results: At equivalent levels of BMI‐for‐age, black children had less (mean, 3%) body fatness than white children, and Asian girls had slightly higher (1%) levels of %body fat than white girls. These differences, however, varied by BMI‐for‐age, with the excess body fatness of Asians evident only among relatively thin children. The ability of overweight to identify girls with excess body fatness also varied by race/ethnicity. Of the girls with excess body fatness, 89% (24/27) of black girls, but only 50% (8/16) of Asian girls, were overweight (P = 0.03). Furthermore, the proportion of overweight girls who had excess body fatness varied from 62% (8/13) among Asians to 100% (13/13) among whites. Discussion: There are racial or ethnic differences in body fatness among children, but these differences vary by BMI‐for‐age. If race/ethnicity differences in body fatness among adults also vary by BMI, it may be difficult to develop race‐specific BMI cut points to identify equivalent levels of %body fat.  相似文献   

10.
Objective: The objective of this study was to test whether the thermic effect of oral protein is blunted in poorly controlled type 2 diabetes and is corrected by normalization of glycemia with insulin and 28 days of a very‐low‐energy diet. Research Methods and Procedures: Resting energy expenditure (REE) and the thermic effect of 90 g of oral protein were measured, using indirect calorimetry, in nine (five women and four men) obese diabetic people [weight, 108 ± 10 kg; waist circumference, 123 ± 8 cm; body mass index, 40 ± 3 kg/m2] who were hyperglycemic on day 8 or euglycemic with insulin on day 16 of a weight‐maintaining diet and euglycemic on day 28 of a very low energy diet (VLED). Results were compared with those of seven (six women and one man) weight‐ and body mass index‐matched obese nondiabetic subjects with a waist circumference of 111 ± 6 cm. Substrates and hormonal responses were determined concurrently. Results: Fasting glucose was normalized in the diabetic subjects with insulin from day 9 of VLED onward. Weight decreased in both groups by 9.9 ± 0.9 kg with VLED. REE was 8 ± 2% lower with insulin treatment and decreased by another 14 ± 3% with VLED in the diabetic and by 15 ± 1% in the nondiabetic subjects by week 4. After the protein meal, the thermic response was significantly (p < 0.05) less with hyperglycemia than with insulin‐induced euglycemia, as percentage above REE (15.3 ± 1.4 compared with 21.2 ± 1.5%), as percentage of the energy content of the meal (19.5 ± 1.5 compared with 25.2 ± 1.7%), as kilocalories per 405 minutes (86 ± 5 compared with 110 ± 7), and less than in nondiabetic obese controls (21.0 ± 2.2% above REE, 24.4 ± 1.7% of energy of meal). After the VLED, the thermic effect of protein was significantly higher in both groups only as percentage above REE. The initial glucagon response was greater with hyperglycemia compared with euglycemia and post‐VLED but not compared with the nondiabetic subjects. Hyperglycemia was associated with 21 ± 4% greater urinary urea nitrogen excretion and urinary glucose losses of 134 ± 50 mmol/d. Discussion: This study shows a blunted thermic effect of protein in obese hyperglycemic type 2 diabetic subjects compared with matched nondiabetic subjects that can be corrected with insulin‐ or energy restriction‐induced euglycemia.  相似文献   

11.
Objective: To examine the patterns of growth of visceral fat, subcutaneous abdominal fat, and total body fat over a 3‐ to 5‐year period in white and African American children. Research Methods and Procedures: Children (mean age: 8.1 ± 1.6 years at baseline) were recruited from Birmingham, Alabama, and those with three or more repeated annual measurements were included in the analysis (N = 138 children and 601 observations). Abdominal adipose tissue (visceral and subcutaneous) was measured using computed tomography. Total body fat and lean tissue mass were measured by DXA. Random growth curve modeling was performed to estimate growth rates of the different body fat compartments. Results: Visceral fat and total body fat both exhibited significant growth effects before and after adjusting for subcutaneous abdominal fat and lean tissue mass, respectively, and for gender, race, and baseline age (5.2 ± 2.2 cm2/yr and 1.9 ± 0.8 kg/yr, respectively). After adjusting for total body fat, the growth of subcutaneous abdominal fat was not significant. Whites showed a higher visceral fat growth than did African Americans (difference: 1.9 ± 0.8 cm2/yr), but there was no ethnic difference for growth of subcutaneous abdominal fat or total body fat. There were no gender differences found for any of the growth rates. Discussion: Growth of visceral fat remained significant after adjusting for growth of subcutaneous abdominal fat, implying that the acquisition of the two abdominal fat compartments may involve different physiologic mechanisms. In contrast, growth of subcutaneous abdominal fat was explained by growth in total body fat, suggesting that subcutaneous fat may not be preferentially deposited in the abdominal area during this phase of growth. Finally, significantly higher growth of visceral fat in white compared with African American children is consistent with cross‐sectional findings.  相似文献   

12.
Objective: To develop improved predictive regression equations for body fat content derived from common anthropometric measurements. Research Methods and Procedures: 117 healthy German subjects, 46 men and 71 women, 26 to 67 years of age, from two different studies were assigned to a validation and a cross‐validation group. Common anthropometric measurements and body composition by DXA were obtained. Equations using anthropometric measurements predicting body fat mass (BFM) with DXA as a reference method were developed using regression models. Results: The final best predictive sex‐specific equations combining skinfold thicknesses (SF), circumferences, and bone breadth measurements were as follows: BFMNew (kg) for men = ?40.750 + [(0.397 × waist circumference) + [6.568 × (log triceps SF + log subscapular SF + log abdominal SF)]] and BFMNew (kg) for women = ?75.231 + [(0.512 × hip circumference) + [8.889 × (log chin SF + log triceps SF + log subscapular SF)] + (1.905 × knee breadth)]. The estimates of BFM from both validation and cross‐validation had an excellent correlation, showed excellent correspondence to the DXA estimates, and showed a negligible tendency to underestimate percent body fat in subjects with higher BFM compared with equations using a two‐compartment (Durnin and Womersley) or a four‐compartment (Peterson) model as the reference method. Discussion: Combining skinfold thicknesses with circumference and/or bone breadth measures provide a more precise prediction of percent body fat in comparison with established SF equations. Our equations are recommended for use in clinical or epidemiological settings in populations with similar ethnic background.  相似文献   

13.
Body composition assessment during infancy is important because it is a critical period for obesity risk development, thus valid tools are needed to accurately, precisely, and quickly determine both fat and fat‐free mass. The purpose of this study was to compare body composition estimates using dual‐energy x‐ray absorptiometry (DXA) and air displacement plethysmography (ADP) at 6 months old. We assessed the agreement between whole body composition using DXA and ADP in 84 full‐term average‐for‐gestational‐age boys and girls using DXA (Lunar iDXA v11–30.062; Infant whole body analysis enCore 2007 software, GE, Fairfield, CT) and ADP (Infant Body Composition System v3.1.0, COSMED USA, Concord, CA). Although the correlations between DXA and ADP for %fat (r = 0.925), absolute fat mass (r = 0.969), and absolute fat‐free mass (r = 0.945) were all significant, body composition estimates by DXA were greater for both %fat (31.1 ± 3.6% vs. 26.7 ± 4.7%; P < 0.001) and absolute fat mass (2,284 ± 449 vs. 1,921 ± 492 g; P < 0.001), and lower for fat‐free mass (5,022 ± 532 vs. 5,188 ± 508 g; P < 0.001) vs. ADP. Inter‐method differences in %fat decreased with increasing adiposity and differences in fat‐free mass decreased with increasing infant age. Estimates of body composition determined by DXA and ADP at 6 months of age were highly correlated, but did differ significantly. Additional work is required to identify the technical basis for these rather large inter‐method differences in infant body composition.  相似文献   

14.
Objective: To determine the validity of the following six body composition methods against a reference method (three‐component model): air displacement plethysmography (BODPOD); estimation from body density using BODPOD; skinfold thickness using the Slaughter equations; bioelectrical impedance, both leg‐leg (TANITA) and hand—foot (Bodystat) approaches; and total body water. Research Methods and Procedures: Forty‐two healthy white 10‐ to 14‐year‐old boys (mean age, 12.9 ± 1.0 years) were enrolled in this study. Measures of body fat percentage and body fat mass derived from the three‐component model were used as the reference method. Validity of all of the other methods was assessed by comparison against the reference by calculation of biases and limits of agreement. Results: Mean body fatness measured using the reference method was 16.4 ± 11.6% and 8.7 ± 7.0 kg. Estimates of fatness from total body water had the narrowest limits of agreement relative to the reference (+0.9 ± 5.0% body fat; +0.5 ± 2.9 kg fat mass). For all other methods tested, we observed large biases and very wide limits of agreement. Discussion: This study suggests that the validity of newer field and laboratory methods for estimation of body composition is poor in adolescent boys. For applications where high accuracy of estimation at the individual level is essential, only reference methods would be acceptable.  相似文献   

15.
Objective: A low resting metabolic rate for a given body size and composition, a low rate of fat oxidation, low levels of physical activity, and low plasma leptin concentrations are all risk factors for body weight gain. The aim of the present investigation was to compare resting metabolic rate (RMR), respiratory quotient (RQ), levels of physical activity, and plasma leptin concentrations in eight post‐obese adults (2 males and 6 females; 48.9 ± 12.2 years; body mass index [BMI]: 24.5 ± 1.0 kg/m2; body fat 33 ± 5%; mean ± SD) who lost 27.1 ± 21.3 kg (16 to 79 kg) and had maintained this weight loss for ≥2 months (2 to 9 months) to eight age‐ and BMI‐matched control never‐obese subjects (1 male and 7 females; 49.1 ± 5.2 years; BMI 24.4 ± 1.0 kg/m2; body fat 33 ± 7%). Research Methods and Procedures: Following 3 days of weight maintenance diet (50% carbohydrate and 30% fat), RMR and RQ were measured after a 10‐hour fast using indirect calorimetry and plasma leptin concentrations were measured using radioimmunoassay. Levels of physical activity were estimated using an accelerometer over a 48‐hour period in free living conditions. Results: After adjustment for fat mass and fat‐free mass, post‐obese subjects had, compared with controls, similar levels of physical activity (4185 ± 205 vs. 4295 ± 204 counts) and similar RMR (1383 ± 268 vs. 1430 ± 104 kcal/day) but higher RQ (0.86 ± 0.04 vs. 0.81 ± 0.03, p < 0.05). Leptin concentration correlated positively with percent body fat (r = 0.57, p < 0.05) and, after adjusting for fat mass and fat‐free mass, was lower in post‐obese than in control subjects (4.5 ± 2.1 vs. 11.6 ± 7.9 ng/mL, p < 0.05). Discussion: The low fat oxidation and low plasma leptin concentrations observed in post‐obese individuals may, in part, explain their propensity to relapse.  相似文献   

16.
The prevalence of obesity among African American women approaches 50% and greatly exceeds rates for Caucasian women. In addition, black women lose less weight than white during obesity treatment and gain more weight when untreated. This study assessed resting energy expenditure (REE) and body composition in obese white (n=122) and black (n=44) women to explore the relationship between biological variables and these observed differences. REE and body composition were assessed by indirect calorimetry and densitometry, respectively, before weight loss. REE was significantly lower in black subjects (1637.6 ± 236.9 kcal/d) than in white (1731.4 ± 262.0) (p=0.04). REE remained significantly lower in blacks than whites after adjusting for body weight (p=0.02). REE, adjusted for fat-free mass, was also significantly lower in blacks than whites (p<0.0001), although the overestimation of fat-free mass by densitometry in blacks may have contributed to this finding. There were no differences between the groups in respiratory quotient. These results suggest that a decreased REE may exist in obese black women, and it may be related to the observed differences between black and white women in the prevalence of obesity and in the response to weight loss treatment. These crosssectional findings await confirmation in longitudinal studies.  相似文献   

17.
Objective: To evaluate the precision and accuracy of dual‐energy X‐ray absorptiometry (DXA) for the measurement of total‐bone mineral density (TBMD), total‐body bone mineral (TBBM), fat mass (FM), and bone‐free lean tissue mass (LTM) in mice. Research Methods and Procedures: Twenty‐five male C57BL/6J mice (6 to 11 weeks old; 19 to 29 g) were anesthetized and scanned three times (with repositioning between scans) using a peripheral densitometer (Lunar PIXImus). Gravimetric and chemical extraction techniques (Soxhlet) were used as the criterion method for the determination of body composition; ash content was determined by burning at 600°C for 8 hours. Results: The mean intraindividual coefficients of variation (CV) for the repeated DXA analyses were: TBMD, 0.84%; TBBM, 1.60%; FM, 2.20%; and LTM, 0.86%. Accuracy was determined by comparing the DXA‐derived data from the first scan with the chemical carcass analysis data. DXA accurately measured bone ash content (p = 0.942), underestimated LTM (0.59 ± 0.05g, p < 0.001), and overestimated FM (2.19 ± 0.06g, p < 0.001). Thus, DXA estimated 100% of bone ash content, 97% of carcass LTM, and 209% of carcass FM. DXA‐derived values were then used to predict chemical values of FM and LTM. Chemically extracted FM was best predicted by DXA FM and DXA LTM [FM = ?0.50 + 1.09(DXA FM) ? 0.11(DXA LTM), model r2 = 0.86, root mean square error (RMSE) = 0.233 g] and chemically determined LTM by DXA LTM [LTM = ?0.14 + 1.04(DXA LTM), r2 = 0.99, RMSE = 0.238 g]. Discussion: These data show that the precision of DXA for measuring TBMD, TBBM, FM, and LTM in mice ranges from a low of 0.84% to a high of 2.20% (CV). DXA accurately measured bone ash content but overestimated carcass FM and underestimated LTM. However, because of the close relationship between DXA‐derived data and chemical carcass analysis for FM and LTM, prediction equations can be derived to more accurately predict body composition.  相似文献   

18.
The aim of this study was to determine the accuracy of dual‐energy X‐ray absorptiometry (DXA)‐derived percentage fat estimates in obese adults by using four‐compartment (4C) values as criterion measures. Differences between methods were also investigated in relation to the influence of fat‐free mass (FFM) hydration and various anthropometric measurements. Six women and eight men (age 22–54 years, BMI 28.7–39.9 kg/m2, 4C percent body fat (%BF) 31.3–52.6%) had relative body fat (%BF) determined via DXA and a 4C method that incorporated measures of body density (BD), total body water (TBW), and bone mineral mass (BMM) via underwater weighing, deuterium dilution, and DXA, respectively. Anthropometric measurements were also undertaken: height, waist and gluteal girth, and anterior‐posterior (A‐P) chest depth. Values for both methods were significantly correlated (r2 = 0.894) and no significant difference (P = 0.57) was detected between the means (DXA = 41.1%BF, 4C = 41.5%BF). The slope and intercept for the regression line were not significantly different (P > 0.05) from 1 and 0, respectively. Although both methods were significantly correlated, intraindividual differences between the methods were sizable (4C‐DXA, range = ?3.04 to 4.01%BF) and significantly correlated with tissue thickness (chest depth) or most surrogates of tissue thickness (body mass, BMI, waist girth) but not FFM hydration and gluteal girth. DXA provided cross‐sectional %BF data for obese adults without bias. However, individual data are associated with large prediction errors (±4.2%BF). This error appears to be associated with tissue thickness indicating that the DXA device used may not be able to accurately account for beam hardening in obese cohorts.  相似文献   

19.
Objective: This study tested the hypothesis that tissue-organ components can be derived from DXA measurements, and in turn, resting energy expenditure (REE) can be calculated from the summed heat productions of DXA-estimated brain, skeletal muscle mass (SM), adipose tissue, bone, and residual mass (RM). Research Methods and Procedures: Subjects were divided into five groups of adults <50 years of age. The specific metabolic rate of RM was developed in 13 Group I healthy subjects and a DXA-brain mass prediction formula in 52 Group II subjects. SM, adipose tissue, and bone models were developed based on earlier reports. The composite REE prediction model (REEp) was tested in 154 Group III subjects in whom REEp was compared with measured REE (REEm). Features of the developed model were determined in 94 normal-weight men and women (Group IV) and seven spinal cord injury patients and healthy matched controls (Group V). Results: REEp and REEm in Group III were highly correlated (y = 0.85x + 233; r = 0.82, p < 0.001), and no bias was detected. Both REEm (mean ± SD, 1579 ± 324 kcal/d) and REEp (1585 ± 316 kcal/d) were also highly correlated (r values = 0.85 to 0.98; p values < 0.001) and provided similar group values to REE estimated by the Harris-Benedict equations (1597 ± 279 kcal/d) and Wang's composite fat-free mass–based REE equation (1547 ± 248 kcal/d). New insights into the sources and distribution of REE were provided by analysis of the demonstration groups. Discussion: This approach offers a new practical and educational opportunity to examine REE in subject groups using modeling strategies that reveal the magnitude and distribution of fundamental somatic heat-producing units.  相似文献   

20.
Objective: The presence of appetite hormones, namely glucagon‐like peptide‐1 (GLP‐1), peptide YY (PYY), and leptin in breast milk may be important in infant feeding regulation and infant growth. This study evaluated whether concentrations of GLP‐1, PYY, and leptin change across a single feeding (from fore‐ to hindmilk), and are associated with maternal and infant anthropometrics. Design and Methods: Thirteen postpartum women (mean ± SD: 25.6 ± 4.5 years, 72.0 ± 11.9 kg) provided fore‐ and hindmilk samples 4‐5 weeks after delivery and underwent measurements of body weight and composition by Dual X‐ray Absorptiometry. GLP‐1, PYY, and leptin concentrations were measured using radioimmunoassay, and milk fat content was determined by creamatocrit. Results: Concentration of GLP‐1 and content of milk fat was higher in hindmilk than foremilk (P ≤ 0.05). PYY and leptin concentrations did not change between fore‐ and hindmilk. Both leptin concentration and milk fat content were correlated with indices of maternal adiposity, including body mass index (r = 0.65‐0.85, P < 0.02), and fat mass (r = 0.65‐0.84, P < 0.02). Hindmilk GLP‐1 was correlated with infant weight gain from birth to 6 months (r = ?0.67, P = 0.034). Conclusion: The presence of appetite hormones in breast milk may be important in infant appetite and growth regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号