首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fly》2013,7(4):180-188
Mutations in the Drosophila gene drop-dead (drd) result in early adult lethality and neurodegeneration, but the molecular identity of the drd gene and its mechanism of action are not known. This paper describes the characterization of a new X-linked recessive adult-lethal mutation, originally called lot's wife (lwf1) but subsequently identified as an allele of drd (drdlwf); drdlwf mutants die within two weeks of eclosion. Through mapping and complementation, the drd gene has been identified as CG33968, which encodes a putative integral membrane protein of unknown function. The drdlwf allele is associated with a nonsense mutation that eliminates nearly 80% of the CG33968 gene product; mutations in the same gene were also found in two previously described drd alleles. Characterization of drdlwf flies revealed additional phenotypes of drd, most notably, defects in food processing by the digestive system and in oogenesis. Mutant flies store significantly more food in their crops and defecate less than wild-type flies, suggesting that normal transfer of ingested food from the crop into the midgut is dependent upon the DRD gene product. The defect in oogenesis results in the sterility of homozygous mutant females and is associated with a reduction in the number of vitellogenic egg chambers. The disruption in vitellogenesis is far more severe than that seen in starved flies and so is unlikely to be a secondary consequence of the digestive phenotype. This study demonstrates that mutation of the drd gene CG33968 results in a complex phenotype affecting multiple physiological systems within the fly.  相似文献   

2.
In Drosophila melanogaster, mutations in the gene drop-dead (drd) result in early adult lethality, with flies dying within 2 weeks of eclosion. Additional phenotypes include neurodegeneration, tracheal defects, starvation, reduced body mass, and female sterility. The cause of early lethality and the function of the drd protein remain unknown. In the current study, the temporal profiles of drd expression required for adult survival and body mass regulation were investigated. Knockdown of drd expression by UAS-RNAi transgenes and rescue of drd expression on a drd mutant background by a UAS-drd transgene were controlled with the Heat Shock Protein 70 (Hsp70)-Gal4 driver. Flies were heat-shocked at different stages of their lifecycle, and the survival and body mass of the resulting adult flies were assayed. Surprisingly, the adult lethal phenotype did not depend upon drd expression in the adult. Rather, expression of drd during the second half of metamorphosis was both necessary and sufficient to prevent rapid adult mortality. In contrast, the attainment of normal adult body mass required a different temporal pattern of drd expression. In this case, manipulation of drd expression solely during larval development or metamorphosis had no effect on body mass, while knockdown or rescue of drd expression during all of pre-adult (embryonic, larval, and pupal) development did significantly alter body mass. Together, these results indicate that the adult-lethal gene drd is required only during development. Furthermore, the mutant phenotypes of body mass and lifespan are separable phenotypes arising from an absence of drd expression at different developmental stages.  相似文献   

3.
4.
5.
X. Peng  S. M. Mount 《Genetics》1990,126(4):1061-1069
  相似文献   

6.
The Drosophila drop-dead (drd) mutant undergoes massive brain degeneration, resulting in sudden death. drd encodes a multi-pass membrane protein possessing nose resistant to fluoxetine (NRF) and putative acyltransferase domains. However, the etiology of brain degeneration that occurs in drd mutant flies is still poorly understood. Herein, we show that drd neurodegeneration may be because of an oxygen deficit in the brain. We found that DRD protein is selectively expressed in cells secreting cuticular and eggshell layers. These layers exhibit blue fluorescence upon UV excitation, which is reduced in drd flies. The drd tracheal air sacs lacking blue fluorescence collapse, which likely contributes to hypoxia. Consistently, genes induced in hypoxia are up-regulated in drd flies. Feeding of anti-reactive oxygen species agents partially rescue the drd from sudden death. We propose that drd flies can provide a non-invasive animal model for hypoxia-induced cell death.  相似文献   

7.
We have identified 14 families with ataxia-telangiectasia (A-T) in which mutation of the ATM gene is associated with a less severe clinical and cellular phenotype (approximately 10%-15% of A-T families identified in the United Kingdom). In 10 of these families, all the homozygotes have a 137-bp insertion in their cDNA caused by a point mutation in a sequence resembling a splice-donor site. The second A-T allele has a different mutation in each patient. We show that the less severe phenotype in these patients is caused by some degree of normal splicing, which occurs as an alternative product from the insertion-containing allele. The level of the 137-bp PCR product containing the insertion was lowest in two patients who showed a later onset of cerebellar ataxia. A further four families who do not have this insertion have been identified. Mutations detected in two of four of these are missense mutations, normally rare in A-T patients. The demonstration of mutations giving rise to a slightly milder phenotype in A-T raises the interesting question of what range of phenotypes might occur in individuals in whom both mutations are milder. One possibility might be that individuals who are compound heterozygotes for ATM mutations are more common than we realize.  相似文献   

8.
Three I-like conjugative plasmids, ColIdrd1, R144drd3, and R64drd11, which are derepressed for functions involved in conjugation, were found to suppress at least partially the phenotype of temperature-sensitive dnaG mutants of Escherichia coli K-12, as judged from the kinetics of deoxyribonucleic acid synthesis at elevated temperature in newly formed and established plasmid-containing strains. In contrast, the corresponding wild-type plasmids and three F-like derepressed conjugative plasmids, F101, R100drd1, and R1drd16, all failed to suppress. Suppression is presumably caused by a different plasmid-determined function from that which promotes survival of ultraviolet-irradiated bacteria, because both the wild-type I-like plasmids and their drd mutants protected irradiated bacteria. One possible interpretation of these results is that the product of a gene carried by certain I-like plasmids can substitute for the bacterial dnaG gene product during ongoing deoxyribonucleic acid replication.  相似文献   

9.
The premature human aging Werner syndrome (WS) is caused by mutation of the RecQ-family WRN helicase, which is unique in possessing also 3'-5' exonuclease activity. WS patients show significant genomic instability with elevated cancer incidence. WRN is implicated in restraining illegitimate recombination, especially during DNA replication. Here we identify a Drosophila ortholog of the WRN exonuclease encoded by the CG7670 locus. The predicted DmWRNexo protein shows conservation of structural motifs and key catalytic residues with human WRN exonuclease, but entirely lacks a helicase domain. Insertion of a piggyBac element into the 5' UTR of CG7670 severely reduces gene expression. DmWRNexo mutant flies homozygous for this insertional allele of CG7670 are thus severely hypomorphic; although adults show no gross morphological abnormalities, females are sterile. Like human WS cells, we show that the DmWRNexo mutant flies are hypersensitive to the topoisomerase I inhibitor camptothecin. Furthermore, these mutant flies show highly elevated rates of mitotic DNA recombination resulting from excessive reciprocal exchange. This study identifies a novel WRN ortholog in flies and demonstrates an important role for WRN exonuclease in maintaining genome stability.  相似文献   

10.
Drosophila taste gene Tre is located on the distal X chromosome and controls gustatory sensitivity to a subset of sugars [1, 2]. Two adjacent, seven-transmembrane domain genes near the Tre locus are candidate genes for Tre. One (CG3171) encodes a rhodopsin family G protein receptor [3, 4], and the other (Gr5a) is a member of a chemosensory gene family encoding a putative gustatory receptor [5-7]. We carried out molecular analyses of mutations in Tre to elucidate their involvement in the gustatory phenotype. Here, we show that Tre mutations induced by P element-mediated genomic deletions disrupt Gr5a gene organization and the expression of Gr5a mRNA, while disruption of the CG3171 gene or its expression was not always associated with mutations in Tre. In flies with the spontaneous mutation Tre(01), both CG3171 and Gr5a mRNAs are transcribed. Coding sequences of these two candidate genes were compared among various strains. A total of three polymorphic sites leading to amino acid changes in CG3171 were not correlated with the gustatory phenotype. Among four nonsynonymous sites in Gr5a, a single nucleotide polymorphism leading to an Ala218Thr substitution in the predicted second intracellular loop cosegregated with Tre(01). Taken together, the mutation analyses support that Gr5a is allelic to Tre.  相似文献   

11.
Oculoskeletal dysplasia segregates as an autosomal recessive trait in the Labrador retriever and Samoyed canine breeds, in which the causative loci have been termed drd1 and drd2, respectively. Affected dogs exhibit short-limbed dwarfism and severe ocular defects. The disease phenotype resembles human hereditary arthro-ophthalmopathies such as Stickler and Marshall syndromes, although these disorders are usually dominant. Linkage studies mapped drd1 to canine chromosome 24 and drd2 to canine chromosome 15. Positional candidate gene analysis then led to the identification of a 1-base insertional mutation in exon 1 of COL9A3 that cosegregates with drd1 and a 1,267-bp deletion mutation in the 5′ end of COL9A2 that cosegregates with drd2. Both mutations affect the COL3 domain of the respective gene. Northern analysis showed that RNA expression of the respective genes was reduced in affected retinas. These models offer potential for studies such as protein-protein interactions between different members of the collagen gene family, regulation and expression of these genes in retina and cartilage, and even opportunities for gene therapy.  相似文献   

12.
Antisense RNAs have been used for gene interference experiments in many cell types and organisms. However, relatively few experiments have been conducted with antisense genes integrated into the germ line. In Drosophila reduced ribosomal protein (r-protein) gene function has been hypothesized to result in a Minute phenotype. In this report we examine the effects of antisense r-protein 49 expression, a gene known to correspond to a Minute mutation An antisense rp49 gene driven by a strong and inducible promoter was transformed into the Drosophila germ line. Induction of this gene led to the development of flies with weak Minute phenotypes and to the transient arrest of oogenesis. Parameters that may affect the success of antisense gene inactivation are discussed.  相似文献   

13.
M. D. Phillips  A. Shearn 《Genetics》1990,125(1):91-101
The polycomb-group genes, a set of genes characterized by mutations that cause similar phenotypes and dosage-dependent interactions, are required for the normal expression of segment-specific homeotic loci. Here we report that polycombeotic (formerly 1(3)1902), originally identified by a lethal mutation that causes a small-disc phenotype, is also a member of this group of essential genes. Adults homozygous for temperature-sensitive pco alleles that were exposed to the restrictive temperature during larval life display the second and third leg to first leg transformation characteristic of polycomb-group mutants. Adult females homozygous for temperature-sensitive alleles exposed to the restrictive temperature during oogenesis produce embryos that show anterior segments with structures normally unique to the eighth abdominal segment, another transformation characteristic of polycomb-group mutants. Mutations in the polycombeotic gene also cause defects not reported for mutations in other polycomb-group genes. Females homozygous for the most extreme temperature-sensitive allele are sterile, and larvae homozygous for null alleles have small imaginal discs and reduced frequencies of mitotic figures in the brain. Dominant mutations originally identified as enhancers or suppressors of zeste are gain-of-function alleles of polycombeotic. The type and variety of defects displayed by different mutations in this gene indicate that the product might be involved in chromosome structure and/or function.  相似文献   

14.
15.
Mutation of the gene drop-dead (drd) causes adult Drosophila to die within 2 weeks of eclosion and is associated with reduced rates of defecation and increased volumes of crop contents. In the current study, we demonstrate that flies carrying the strong allele drdlwf display a reduction in the transfer of ingested food from the crop to the midgut, as measured both as a change in the steady-state distribution of food within the gut and also in the rates of crop emptying and midgut filling following a single meal. Mutant flies have abnormal triglyceride (TG) and glycogen stores over the first 4 days post-eclosion, consistent with their inability to move food into the midgut for digestion and nutrient absorption. However, the lifespan of mutants was dependent upon food presence and quality, suggesting that at least some individual flies were able to digest some food. Finally, spontaneous motility of the crop was abnormal in drdlwf flies, with the crops of mutant flies contracting significantly more rapidly than those of heterozygous controls. We therefore hypothesize that mutation of drd causes a structural or regulatory defect that inhibits the entry of food into the midgut.  相似文献   

16.
The Drosophila nucleoporin gene nup154 is required in both male and female germline for successful gametogenesis. Mutant flies lack differentiated sperm and lay abnormal eggs. We demonstrated that the egg phenotype was associated with specific alterations of the actin cytoskeleton at different stages of oogenesis. Actually, mutant egg chambers displayed an abnormal organization of both subcortical microfilaments and cytoplasmic actin bundles, that led to defective nurse cell dumping. TUNEL analysis also showed that the dumpless phenotype was associated with delayed apoptosis. The nup154 gene product was localized by conventional immunofluorescence microscopy to the nuclear envelope in a distinct punctuate pattern, characteristic of nuclear pore complex components. TEM analysis revealed that the protein was mainly distributed along filamentous structures that extended radially on the nuclear side of the pore, suggesting that Nup154 could be an integral component of the basket filaments associated with the nuclear pore complexes. We propose that Nup154 is necessary for correct nuclear pore complex functions and that the proper regulation of the actin cytoskeleton dynamics strongly relies upon nuclear pore integrity.  相似文献   

17.
S B Scholnick  B A Morgan  J Hirsh 《Cell》1983,34(1):37-45
The Drosophila dopa decarboxylase gene, Ddc, functions normally when reintroduced into flies. DNA containing a cloned Ddc gene inserted into a P element transposon was injected into early embryos. Transformants were identified by suppression of the cuticular phenotype of a Ddc mutant allele. The reintegrated genes are expressed in the proper tissue and at the proper stages during development even though their positions within the genome are different from that of the wild-type Ddc gene. Absolute levels of DDC enzyme activity are within 35% of that found in wild-type Canton S flies, the source of the transforming DNA. The transformants' Ddc RNA is indistinguishable from that of wild type. One reintegrated Ddc gene, inserted on the X chromosome, is affected by the dosage compensation mechanism that leads to sex-specific differences in the expression of many X-chromosome genes.  相似文献   

18.
The Drosophila Glued gene product shares sequence homology with the p150 component of vertebrate dynactin. Dynactin is a multiprotein complex that stimulates cytoplasmic dynein-mediated vesicle motility in vitro. In this report, we present biochemical, cytological, and genetic evidence that demonstrates a functional similarity between the Drosophila Glued complex and vertebrate dynactin. We show that, similar to the vertebrate homologues in dynactin, the Glued polypeptides are components of a 20S complex. Our biochemical studies further reveal differential expression of the Glued polypeptides, all of which copurify as microtubule-associated proteins. In our analysis of the Glued polypeptides encoded by the dominant mutation, Glued, we identify a truncated polypeptide that fails to assemble into the wild-type 20S complex, but retains the ability to copurify with microtubules. The spatial and temporal distribution of the Glued complex during oogenesis is shown by immunocytochemistry methods to be identical to the pattern previously described for cytoplasmic dynein. Significantly, the pattern of Glued distribution in oogenesis is dependent on dynein function, as well as several other gene products known to be required for proper dynein localization. In genetic complementation studies, we find that certain mutations in the cytoplasmic dynein heavy chain gene Dhc64C act as dominant suppressors or enhancers of the rough eye phenotype of the dominant Glued mutation. Furthermore, we show that a mutation that was previously isolated as a suppressor of the Glued mutation is an allele of Dhc64C. Together with the observed dependency of Glued localization on dynein function, these genetic interactions demonstrate a functional association between the Drosophila dynein motor and Glued complexes.  相似文献   

19.
20.
Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号