首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of alternative splicing is controlled by pre-mRNA sequences (cis-elements) and trans-acting protein factors that bind them. The combinatorial interactions of multiple protein factors with the cis-elements surrounding a given alternative splicing event lead to an integrated splicing decision. The mechanism of multifactorial splicing regulation is poorly understood. Using a splicing-sensitive DNA microarray, we assayed 352 Caenorhabditis elegans alternative cassette exons for changes in embryonic splicing patterns between wild-type and 12 different strains carrying mutations in a splicing factor. We identified many alternative splicing events that are regulated by multiple splicing factors. Many splicing factors have the ability to behave as splicing repressors for some alternative cassette exons and as splicing activators for others. Unexpectedly, we found that the ability of a given alternative splicing factor to behave as an enhancer or repressor of a specific splicing event can change during development. Our observations that splicing factors can change their effects on a substrate during development support a model in which combinatorial effects of multiple factors, both constitutive and developmentally regulated ones, contribute to the overall splicing decision.  相似文献   

2.
3.
Free oligosaccharides (FOSs) in the cytosol of eukaryotic cells are mainly generated during endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded glycoproteins. We analyzed FOS of the nematode Caenorhabditis elegans to elucidate its detailed degradation pathway. The major FOSs were high mannose-type ones bearing 3-9 Man residues. About 94% of the total FOSs had one GlcNAc at their reducing end (FOS-GN1), and the remaining 6% had two GlcNAc (FOS-GN2). A cytosolic endo-beta-N-acetylglucosaminidase mutant (tm1208) accumulated FOS-GN2, indicating involvement of the enzyme in conversion of FOS-GN2 into FOS-GN1. The most abundant FOS in the wild type was Man(5)GlcNAc(1), the M5A' isomer (Manalpha1-3(Manalpha1-6)Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAc), which is different from the corresponding M5B' (Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAc) in mammals. Analyses of FOS in worms treated with Golgi alpha-mannosidase I inhibitors revealed decreases in Man(5)GlcNAc(1) and increases in Man(7)GlcNAc(1). These results suggested that Golgi alpha-mannosidase I-like enzyme is involved in the production of Man(5-6)-GlcNAc(1), which is unlike in mammals, in which cytosolic alpha-mannosidase is involved. Thus, we assumed that major FOSs in C. elegans were generated through Golgi trafficking. Analysis of FOSs from a Golgi alpha-mannosidase II mutant (tm1078) supported this idea, because GlcNAc(1)Man(5)GlcNAc(1), which is formed by the Golgi-resident GlcNAc-transferase I, was found as a FOS in the mutant. We concluded that significant amounts of misfolded glycoproteins in C. elegans are trafficked to the Golgi and are directly or indirectly retro-translocated into the cytosol to be degraded.  相似文献   

4.
5.
Recent results showing that a single fibronectin gene can give rise to several different mRNAs by alternative splicing have offered an explanation for fibronectin polymorphism. Here we report on monoclonal antibodies that show specificity for a fibronectin segment (ED) that can be included or omitted from the molecule depending on the pattern of splicing of the mRNA precursors. Using these monoclonals, we have quantitatively analyzed the expression of the ED sequence in human fibronectin from different sources. The results demonstrated that, at the protein level, the ED segment is not expressed in plasma fibronectin and that, in fibronectin from the tissue culture medium of tumor-derived or simian virus-40-transformed human cells, the percentage of fibronectin molecules containing the ED segment is about 10 times higher than in fibronectin from normal human fibroblasts. These results suggest that in malignant cells the mechanisms that regulate the splicing of mRNA precursors are altered.  相似文献   

6.
7.
8.
Iron regulatory protein-1 (IRP-1) is a cytosolic RNA-binding protein that is a regulator of iron homeostasis in mammalian cells. IRP-1 binds to RNA structures, known as iron-responsive elements, located in the untranslated regions of specific mRNAs, and it regulates the translation or stability of these mRNAs. Iron regulates IRP-1 activity by converting it from an RNA-binding apoprotein into a [4Fe-4S] cluster protein exhibiting aconitase activity. IRP-1 is widely found in prokaryotes and eukaryotes. Here, we report the biochemical characterization and regulation of an IRP-1 homolog in Caenorhabditis elegans (GEI-22/ACO-1). GEI-22/ACO-1 is expressed in the cytosol of cells of the hypodermis and the intestine. Like mammalian IRP-1/aconitases, GEI-22/ACO-1 exhibits aconitase activity and is post-translationally regulated by iron. Although GEI-22/ACO-1 shares striking resemblance to mammalian IRP-1, it fails to bind RNA. This is consistent with the lack of iron-responsive elements in the C. elegans ferritin genes, ftn-1 and ftn-2. While mammalian ferritin H and L mRNAs are translationally regulated by iron, the amounts of C. elegans ftn-1 and ftn-2 mRNAs are increased by iron and decreased by iron chelation. Excess iron did not significantly alter worm development but did shorten their life span. These studies indicated that iron homeostasis in C. elegans shares some similarities with those of vertebrates.  相似文献   

9.
GC-AG introns represent 0.7% of total human pre-mRNA introns. To study the function of GC-AG introns in splicing regulation, 196 cDNA-confirmed GC-AG introns were identified in Caenorhabditis elegans. These represent 0.6% of the cDNA- confirmed intron data set for this organism. Eleven of these GC-AG introns are involved in alternative splicing. In a comparison of the genomic sequences of homologous genes between C.elegans and Caenorhabditis briggsae for 26 GC-AG introns, the C at the +2 position is conserved in only five of these introns. A system to experimentally test the function of GC-AG introns in alternative splicing was developed. Results from these experiments indicate that the conserved C at the +2 position of the tenth intron of the let-2 gene is essential for developmentally regulated alternative splicing. This C allows the splice donor to function as a very weak splice site that works in balance with an alternative GT splice donor. A weak GT splice donor can functionally replace the GC splice donor and allow for splicing regulation. These results indicate that while the majority of GC-AG introns appear to be constitutively spliced and have no evolutionary constraints to prevent them from being GT-AG introns, a subset of GC-AG introns is involved in alternative splicing and the C at the +2 position of these introns can have an important role in splicing regulation.  相似文献   

10.
Cho JH  Bandyopadhyay J  Lee J  Park CS  Ahnn J 《Gene》2000,261(2):211-219
SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase), a membrane bound Ca(2+)- /Mg(2+)- dependent ATPase that sequesters Ca(2+) into the SR/ER lumen, is one of the essential components for the maintenance of intracellular Ca(2+) homeostasis. Here we describe the identification and functional characterization of a C. elegans SERCA gene (ser-1). ser-1 is a single gene alternatively spliced at its carboxyl terminus to form two isoforms (SER-1A and SER-1B) and displays a high homology (70% identity, 80% similarity) with mammalian SERCAs. Green fluorescent protein (GFP) and whole-mount immunostaining analyses reveal that SER-1 expresses in neuronal cells, body-wall muscles, pharyngeal and vulval muscles, excretory cells, and vulva epithelial cells. Furthermore, SER-1::GFP expresses during embryonic stages and the expression is maintained through the adult stages. Double-stranded RNA injection (also known as RNAi) targeted to each SER-1 isoform results in severe phenotypic defects: ser-1A(RNAi) animals show embryonic lethality, whereas ser-1B(RNAi) results in L1 larval arrest phenotype. These findings suggest that both isoforms of C. elegans SERCA, like in mammals, are essential for embryonic development and post-embryonic growth and survival.  相似文献   

11.
12.
13.
14.
We here report the existence of 6 additional isoforms of the NMDA receptor generated via alternative splicing by molecular analysis of cDNA clones isolated from a rat forebrain cDNA library. These isoforms possess the structures with an insertion at the extracellular amino-terminal region or deletions at two different extracellular carboxyl-terminal regions, or those formed by combinations of the above insertion and deletions. One of the deletions results in the generation of a new carboxyl-terminal sequence. All these isoforms possess the ability to induce electrophysiological responses to NMDA and respond to various antagonists selective to the NMDA receptor in the Xenopus oocyte expression system. In addition, a truncated form of the NMDA receptor also exists that contains only the extreme amino-terminal sequence of this protein molecule. These data indicate that the NMDA receptor consists of heterogeneous molecules that differ in the extracellular sequence of the amino- and carboxyl-terminal regions.  相似文献   

15.
16.
17.
The spindle-assembly checkpoint ensures that, during mitosis and meiosis, chromosomes do not segregate until they are properly attached to the microtubules of the spindle. Here we show that mdf-1 and mdf-2 are components of the spindle-assembly checkpoint in Caenorhabditis elegans, and are essential for the long-term survival and fertility of this organism. Loss of function of either of these genes leads to the accumulation of a variety of defects, including chromosome abnormalities, X-chromosome non-disjunction or loss, problems in gonad development, and embryonic lethality. Antibodies that recognize the MDF-2 protein localize to nuclei of the cleaving embryo in a cell-cycle-dependent manner. mdf-1, a gene encoding a product that interacts with MDF-2, is required for cell-cycle arrest and proper chromosome segregation in premeiotic germ cells treated with nocodazole, a microtubule-depolymerizing agent. In the absence of mdf gene products, errors in chromosome segregation arise and accumulate, ultimately leading to genetic lethality.  相似文献   

18.
The free-living nematode Caenorhabditis elegans expresses 18 cyclophilin isoforms, eight of which are conserved single domain forms, comprising two closely related secreted or type B forms (CYP-5 and CYP-6). Recombinant CYP-5 has been purified, crystallised and the X-ray structure solved to a resolution of 1.75A. The detailed molecular architecture most strongly resembles the structure of human cyclophilin B with conserved changes in loop structure and N and C-terminal extensions. Interestingly, the active site pocket is occupied by a molecule of dithiothreitol though this has little effect on the geometry of the active site which is similar to other cyclophilin structures. The peptidyl-prolyl isomerase activity of CYP-5 has been characterised against the substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, and gives a k(cat)/K(m) value of 3.6x10(6)M(-1)s(-1) that compares with a value of 6.3x10(6)M(-1)s(-1) for human cyclophilin B. The immunosuppressive drug cyclosporin A binds and inhibits CYP-5 with an IC(50) value of 50nM, which is comparable to the value of 84nM found for human cyclophilin B. CYP-6 has 67% sequence identity with CYP-5 and a molecular model was built based on the CYP-5 crystal structure. The model shows that CYP-5 and CYP-6 are likely to have very similar structures, but with a markedly increased number of negative charges distributed around the surface of CYP-6. The spatial expression patterns of the cyclophilin B isoforms were examined using transgenic animals carrying a LacZ reporter fusion to these genes, and both cyp-5 and cyp-6 are found to be expressed in an overlapping fashion in the nematode gut. The temporal expression pattern of cyp-5 was further determined and revealed a constitutive expression pattern, with highest abundance levels being found in the embryo.  相似文献   

19.
Octopamine regulates essential processes in nematodes; however, little is known about the physiological role of its precursor, tyramine. In the present study, we have characterized alternatively spliced Caenorhabditis elegans tyramine receptor isoforms (SER-2 and SER-2A) that differ by 23 amino acids within the mid-region of the third intracellular loop. Membranes prepared from cells expressing either SER-2 or SER-2A bind [3H]lysergic acid diethylamide (LSD) in the low nanomolar range and exhibit highest affinity for tyramine. Similarly, both isoforms exhibit nearly identical Ki values for a number of antagonists. In contrast, SER-2A exhibits a significantly lower affinity than SER-2 for other physiologically relevant biogenic amines, including octopamine. Pertussis toxin treatment reduces affinity for both tyramine and octopamine, especially for octopamine in membranes from cells expressing SER-2, suggesting that the conformation of the mid-region of the third intracellular loop is dictated by G-protein interactions and is responsible for the differential tyramine/octopamine affinities of the two isoforms. Tyramine reduces forskolin-stimulated cAMP levels in HEK293 cells expressing either isoform with nearly identical IC50 values. Tyramine, but not octopamine, also elevates Ca2+ levels in cells expressing SER-2 and to a lesser extent SER-2A. Most importantly, ser-2 null mutants (pk1357) fail to suppress head movements while reversing in response to nose-touch, suggesting a role for SER-2 in the regulation of foraging behavior, and fail to respond to tyramine in assays measuring serotonin-dependent pharyngeal pumping. These are the first reported functions for SER-2. These results suggest that C. elegans contains tyramine receptors, that individual SER-2 isoforms may differ significantly in their sensitivity to other physiologically relevant biogenic amines, such as octopamine (OA), and that tyraminergic signaling may be important in the regulation of key processes in nematodes.  相似文献   

20.
In animals, microRNAs (miRNAs), typically, pair to sites of partial complementarity in the 3′-untranslated regions (3′UTRs) of target genes. Regulation by miRNAs often results in down-regulation of target mRNA and protein expression by mechanisms that are yet to be fully elucidated. Additionally, changes in environmental conditions have been shown to influence miRNA function in some cell culture systems. Here, we report the effect of nutrient deprivation on regulation of an endogenous miRNA target in developing worms. In Caenorhabditis elegans, the lin-4 miRNA recognizes multiple sites in the lin-14 3′UTR and directs mRNA degradation and translational repression, but it is unclear how these processes are coupled. In this study, we demonstrate that nutrient deprivation results in loss of lin-14 mRNA, but not protein, repression. In worms removed from feeding conditions, lin-14 mRNA reaccumulates despite the continued expression of lin-4 miRNA. The relative increase in lin-14 mRNA levels during nutrient deprivation is less pronounced in genetic mutants lacking lin-4 miRNA or the lin-14 3′UTR target sites. In conclusion, regulation of lin-14 at the mRNA and protein levels can be uncoupled by changes in culture conditions, indicating that miRNA function can be modulated by environment in multicellular organisms. The awareness that endogenous miRNA pathways can be sensitive to environment is an important consideration for elucidating the mechanism used by miRNAs to regulate target mRNA and protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号