首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphate-activated mitochondrial glutaminase (GLS2) is suggested to be linked with elevated glutamine metabolism. It plays an important role in catalyzing the hydrolysis of glutamine to glutamate. The present study was to investigate the potent effect of GLS2 on radioresistance of cervical carcinoma. GLS2 was examined in 144 cases of human cervical cancer specimens (58 radioresistant specimens, 86 radiosensitive specimens) and 15 adjacent normal cervical specimens with immunohistochemistry. HeLa cells were treated with a cumulative dose of 50 Gy X-rays, over 6 months, yielding the resistant sub-line HeLaR. The expressions of GLS2 were measured by Western blot. Radioresistance was tested by colony survival assay. Apoptosis was determined by flow cytometry. The levels of glutathione (GSH), reactive oxygen species (ROS), NAD+/NADH ratio and NADP+/NADPH ratio were detected by quantization assay kit. Xenografts were used to confirm the effect of GLS2 on radioresistance in vivo. The expressions of GLS2 were significantly enhanced in tumor tissues of radioresistant patients compared with that in radiosensitive patients. In vitro, the radioresistant cell line HeLaR exhibited significantly increased GLS2 levels than its parental cell line HeLa. GLS2 silenced radioresistant cell HeLaR shows substantially enhanced radiosensitivity with lower colony survival and higher apoptosis in response to radiation. In vivo, xenografts with GLS2 silenced HeLaR were more sensitive to radiation. At the molecular level, knock-down of GLS2 increased the intracellular ROS levels of HeLaR exposed to irradiation by decreasing the productions of antioxidant GSH, NADH and NADPH. GLS2 may have an important role in radioresistance in cervical cancer patients.  相似文献   

2.
Cytoglobin is a recently identified vertebrate globin whose functions include scavenging reactive oxygen and nitrosative species. In tumor cells, CYGB may function as a tumor suppressor gene. Here we show that knockdown of cytoglobin expression can sensitize human glioma cells to oxidative stress induced by chemical inhibitors of the electron transport chain and as well can increase cellular radiosensitivity. When treated with antimycin A, an inhibitor of the mitochondrial electron transport chain, cytoglobin-deficient cells showed significantly higher H?O? levels, whereas H?O? levels were significantly reduced in cytoglobin-overexpressing cells. In addition, cytoglobin knockdown significantly decreased the doubling time of glioma cell lines, consistent with a putative tumor suppressor function. These finding suggest that modulating cytoglobin levels may be a promising treatment strategy for sensitizing human glioma cells to oxidative stress that is induced by ionizing radiation, certain chemotherapies and ischemia-reperfusion.  相似文献   

3.
4.
5.
Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.  相似文献   

6.
7.
Although biochemical properties of 2-Cys peroxiredoxins (Prxs) have been extensively studied, their real physiological functions in higher eukaryotic cells remain obscure and certainly warrant further study. Here we demonstrated that human (h) PrxII, a cytosolic isotype of human 2-Cys Prx, has dual functions as a peroxidase and a molecular chaperone, and that these different functions are closely associated with its adoption of distinct protein structures. Upon exposure to oxidative stress, hPrxII assumes a high molecular weight complex structure that has a highly efficient chaperone function. However, the subsequent removal of stressors induces the dissociation of this protein structure into low molecular weight proteins and triggers a chaperone-to-peroxidase functional switch. The formation of a high molecular weight hPrxII complex depends on the hyperoxidation of its N-terminal peroxidatic Cys residue as well as on its C-terminal domain, which contains a "YF motif" that is exclusively found in eukaryotic 2-Cys Prxs. A C-terminally truncated hPrxII exists as low and oligomeric protein species and does not respond to oxidative stress. Moreover, this C-terminal deletion of hPrxII converted it from an oxidation-sensitive to a hyperoxidation-resistant form of peroxidase. When functioning as a chaperone, hPrxII protects HeLa cells from H(2)O(2)-induced cell death, as measured by a terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay and fluorescence-activated cell sorting analysis.  相似文献   

8.
Nitric oxide (NO) is a potent activator of the p53 tumor suppressor protein. However, the mechanisms underlying p53 activation by NO have not been fully elucidated. We previously reported that a rapid downregulation of Mdm2 by NO may contribute to the early phase of p53 activation. Here we show that NO promotes p53 nuclear retention and inhibits Mdm2-mediated p53 nuclear export. NO induces phosphorylation of p53 on serine 15, which does not require ATM but rather appears to depend on the ATM-related ATR kinase. An ATR-kinase dead mutant or caffeine, which blocks the kinase activity of ATR, effectively abolishes the ability of NO to cause p53 nuclear retention, concomitant with its inhibition of p53 serine 15 phosphorylation. Of note, NO enhances markedly the ability of low-dose ionizing radiation to elicit apoptotic killing of neuroblastoma cells expressing cytoplasmic wild-type p53. These findings imply that, through augmenting p53 nuclear retention, NO can sensitize tumor cells to p53-dependent apoptosis. Thus, NO donors may potentially increase the efficacy of radiotherapy for treatment of certain types of cancer.  相似文献   

9.
DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway.  相似文献   

10.
Common hallmarks of cancer include the dysregulation of cell cycle progression and the acquisition of genome instability. In tumors, G1 cell cycle checkpoint induction is often lost. This increases the reliance on a functional G2/M checkpoint to prevent progression through mitosis with damaged DNA, avoiding the introduction of potentially aberrant genetic alterations. Treatment of tumors with ionizing radiation (IR) utilizes this dependence on the G2/M checkpoint. Therefore, identification of factors which regulate this process could yield important biomarkers for refining this widely used cancer therapy. Leucine zipper and ICAT domain containing (LZIC) downregulation has been associated with the development of IR-induced tumors. However, despite LZIC being highly conserved, it has no known molecular function. We demonstrate that LZIC knockout (KO) cell lines show a dysregulated G2/M cell cycle checkpoint following IR treatment. In addition, we show that LZIC deficient cells competently activate the G1 and early G2/M checkpoint but fail to maintain the late G2/M checkpoint after IR exposure. Specifically, this defect was found to occur downstream of PIKK signaling. The LZIC KO cells demonstrated severe aneuploidy indicative of genomic instability. In addition, analysis of data from cancer patient databases uncovered a strong correlation between LZIC expression and poor prognosis in several cancers. Our findings suggest that LZIC is functionally involved in cellular response to IR, and its expression level could serve as a biomarker for patient stratification in clinical cancer practice.  相似文献   

11.
Poly(ADP-ribose) and the response of cells to ionizing radiation   总被引:1,自引:0,他引:1  
The activity of poly(ADP-ribose) polymerase is stimulated by DNA damage resulting from treatment of cells with ionizing radiation, as well as with DNA-damaging chemicals. The elevated polymerase activity can be observed at doses lower than those necessary for measurable reduction in cellular NAD concentration (less than 20 Gy). Several nuclear proteins, including the polymerase itself, are poly(ADP-ribosylated) at elevated levels in irradiated Chinese hamster cells. The addition of inhibitors of poly(ADP-ribose) polymerase to irradiated cells has been found to sensitize the cells to the lethal effects of the radiation, to inhibit the repair of potentially lethal damage, and to delay DNA strand break rejoining. Because of the nonspecificity of the inhibitors, however, it is as yet unknown whether their effects are directly related to the inhibition of poly(ADP-ribose) polymerase, to interference with the poly(ADP-ribosylation) of one or more chromosomal proteins, or to effects unrelated to the poly(ADP-ribosylation) process. The data are consistent with the involvement of poly(ADP-ribose) in the repair of radiation damage, but the nature of this involvement remains to be elucidated.  相似文献   

12.
A selenium-dependent glutathione peroxidase cDNA was obtained from green mud crab Scylla paramamosain (SpGPx) by homology PCR technique and rapid amplification of cDNA ends (RACE) methods. The 1135?bp full-length cDNA contains a 9?bp 5'-untranslated region (UTR), an open reading frame (ORF) of 564 bp encoded a deduced protein of 187 amino acids (aa), and a 562?bp 3'-UTR with a 100 bp conserved eukaryotic selenocysteine insertion sequence (SECIS). It involves a putative selenocysteine (Sec(40), or U(40)) residue which is encoded by an opal codon, (127)TGA(129), and forms an active site with residues Q(74) and W(142). Sequence characterization revealed that SpGPx contain a characteristic GPx signature motif 2 ((64)LAFPCNQF(71)), an active site motif ((152)WNFEKF(157)), a potential N-glycosylation site ((76)NTT(78)), and two residues (R(90) and R(168)) which contribute to the electrostatic architecture by directing the glutathione donor substrate. Multiple sequence alignment and phylogenetic analysis showed that SpGPx share a high level of identities and closer relationship with other selected invertebrate GPxs and vertebrate GPx1 and GPx2. Molecular modelling analysis results also supported these observations. Real time quantitative PCR analysis revealed that SpGPx was constitutively expressed in 10 selected tissues, and its expression level in gill and testis was higher than that in the other tissues (p?相似文献   

13.
The anti-cancer activity of calcitriol, the active metabolite of Vitamin D, in the colon is usually attributed to its anti-proliferative and pro-differentiative actions. The levels of reactive oxygen species (ROS) are high in colon carcinomas due to increased aerobic metabolism and exposure to various anti-cancer modalities. We examined whether calcitriol modulates the response of colon cancer cells to the cytotoxic action of the common mediator of ROS injury, H2O2. Pretreatment with calcitriol (100 nM, 48 h) sensitized HT-29 colon cancer cells to cell death induced by acute exposure to H2O2 or chronic exposure to the H2O2 generating system, glucose/glucose-oxidase. Although the morphological features of H2O2-induced HT-29 cell death are consistent with apoptosis, we detected no executioner caspase activation in response to cytotoxic concentrations of H2O2 and treatment with a pan-caspase inhibitor did not affect H2O2-induced cytotoxicity nor its enhancement by calcitriol. Conversely, exposure of HT-29 cells to sub-toxic concentrations of H2O2 resulted in low executioner caspase activation that was inhibited by pretreatment with calcitriol. The sensitization of colon cancer cells to ROS-induced cytotoxicity may contribute to its assumed action as a chemopreventive agent and to its therapeutic potential alone or in combination with other anti-cancer modalities.  相似文献   

14.
15.

Background

The sestrin family of stress-responsive genes (SESN1-3) are suggested to be involved in regulation of metabolism and aging through modulation of the AMPK-mTOR pathway. AMP-activated protein kinase (AMPK) is an effector of the tumour suppressor LKB1, which regulates energy homeostasis, cell polarity, and the cell cycle. SESN1/2 can interact directly with AMPK in response to stress to maintain genomic integrity and suppress tumorigenesis. Ionizing radiation (IR), a widely used cancer therapy, is known to increase sestrin expression, and acutely activate AMPK. However, the regulation of AMPK expression by sestrins in response to IR has not been studied in depth.

Methods and Findings

Through immunoprecipitation we observed that SESN2 directly interacted with the AMPKα1β1γ1 trimer and its upstream regulator LKB1 in MCF7 breast cancer cells. SESN2 overexpression was achieved using a Flag-tagged SESN2 expression vector or a stably-integrated tetracycline-inducible system, which also increased AMPKα1 and AMPKβ1 subunit phosphorylation, and co-localized with phosphorylated AMPKα-Thr127 in the cytoplasm. Furthermore, enhanced SESN2 expression increased protein levels of LKB1 and AMPKα1β1γ1, as well as mRNA levels of LKB1, AMPKα1, and AMPKβ1. Treatment of MCF7 cells with IR elevated AMPK expression and activity, but this effect was attenuated in the presence of SESN2 siRNA. In addition, elevated SESN2 inhibited IR-induced mTOR signalling and sensitized MCF7 cells to IR through an AMPK-dependent mechanism.

Conclusions

Our results suggest that in breast cancer cells SESN2 is associated with AMPK, it is involved in regulation of basal and IR-induced expression and activation of this enzyme, and it mediates sensitization of cancer cells to IR.  相似文献   

16.
17.
Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.  相似文献   

18.
Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) has frequently been observed in human gliomas, conferring AKT activation and resistance to ionizing radiation (IR) and drug treatments. Recent reports have shown that PTEN loss or AKT activation induces premature senescence, but many details regarding this effect remain obscure. In this study, we tested whether the status of PTEN determined fate of the cell by examining PTEN-deficient U87, U251, and U373, and PTEN-proficient LN18 and LN428 glioma cells after exposure to IR. These cells exhibited different cellular responses, senescence or apoptosis, depending on the PTEN status. We further observed that PTEN-deficient U87 cells with high levels of both AKT activation and intracellular reactive oxygen species (ROS) underwent senescence, whereas PTEN-proficient LN18 cells entered apoptosis. ROS were indispensable for inducing senescence in PTEN-deficient cells, but not for apoptosis in PTEN-proficient cells. Furthermore, transfection with wild-type (wt) PTEN or AKT small interfering RNA induced a change from premature senescence to apoptosis and depletion of p53 or p21 prevented IR-induced premature senescence in U87 cells. Our data indicate that PTEN acts as a pivotal determinant of cell fate, regarding senescence and apoptosis in IR-exposed glioma cells. We conclude that premature senescence could have a compensatory role for apoptosis in the absence of the tumor suppressor PTEN through the AKT/ROS/p53/p21 signaling pathway.  相似文献   

19.
Brain mitochondria are not only major producers of reactive oxygen species but they also considerably contribute to the removal of toxic hydrogen peroxide by the glutathione (GSH) and thioredoxin-2 (Trx2) antioxidant systems. In this work we estimated the relative contribution of both systems and catalase to the removal of intrinsically produced hydrogen peroxide (H(2)O(2)) by rat brain mitochondria. By using the specific inhibitors auranofin and 1-chloro-2,4-dinitrobenzene (DNCB), the contribution of Trx2- and GSH-systems to reactive oxygen species (ROS) detoxification in rat brain mitochondria was determined to be 60±20% and 20±15%, respectively. Catalase contributed to a non-significant extent only, as revealed by aminotriazole inhibition. In digitonin-treated rat hippocampal homogenates inhibition of Trx2- and GSH-systems affected mitochondrial hydrogen peroxide production rates to a much higher extent than the endogenous extramitochondrial hydrogen peroxide production, pointing to a strong compartmentation of ROS metabolism. Imaging experiments of hippocampal slice cultures showed on single cell level substantial heterogeneity of hydrogen peroxide detoxification reactions. The strongest effects of inhibition of hydrogen peroxide removal by auranofin or DNCB were detected in putative interneurons and microglial cells, while pyramidal cells and astrocytes showed lower effects. Thus, our data underline the important contribution of the Trx2-system to hydrogen peroxide detoxification in rat hippocampus. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号