首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We theoretically investigate the coupling between Tamm plasmons and localized surface plasmons (LSPs) as well as propagating surface plasmons (PSPs) in a multilayer structure consisting of a metallic nanowire array and a spatially separated metal–dielectric Bragg reflector (DBR). A clear anticrossing behavior of the resonances is observed in the dispersion diagram resulting from the coupling, which is well explained by the coupled oscillator model. The coupling also creates new hybrid LSP or PSP modes with narrow bandwidths and unique spectral features. Upon the excitation of these hybrid modes, the local fields underneath the nanowires for the hybrid LSPs or near the lower metal layer surface for the hybrid PSPs are both enhanced greatly as compared with those achieved in the structure without DBR, which has potential applications in nonlinear optics and surface-enhanced spectroscopies.  相似文献   

2.
Plasmonics - We propose a multi-functional device by using the solid-state plasma, which can be called a plasma metamaterial absorber (PMA). The absorber can get tunable absorption spectrum by...  相似文献   

3.

In this article, we demonstrate a tunable ultra-broadband metamaterial absorber (TUMA) in terahertz (THz) band which is based on the multilayered structure composed of an Au reflective layer, polyimide dielectric layers, and vanadium dioxide (VO2) periodic structures, respectively. We gain the tunable absorption spectra because of the room temperature phased-changed character of VO2. The relative bandwidth reaches to 81.2% and the absorption rate is over 90% at the frequency range of 1.63–3.86 THz when the temperature (t1) is 350 K, but when t1 = 300 K, the presented absorber is acted as a reflector whose absorption is small besides the frequency points of 9.75 THz and 9.81 THz. For the sake of comprehending the physical mechanism in-depth, the electric field (E-field) diagrams, the surface current distributions and the power loss density (PLD) of the TUMA are investigated. The influences of structural arguments and incident angle (θ) on the absorption are also analyzed. The emulated consequences show that the absorption spectrum can be regulated by changing structural parameters and incident angle and the tunable absorption regions can be obtained by altering the external temperature.

  相似文献   

4.
The photovoltaic absorber Cu2ZnSn(SxSe1–x)4 (CZTSSe) has attracted interest in recent years due to the earth‐abundance of its constituents and the realization of high performance (12.6% efficiency). The open‐circuit voltage in CZTSSe devices is believed to be limited by absorber band tailing caused by the exceptionally high density of Cu/Zn antisites. By replacing Cu in CZTSSe with Ag, whose covalent radius is ≈15% larger than that of Cu and Zn, the density of I–II antisite defects is predicted to drop. The fundamental properties of the mixed Ag‐Cu kesterite compound are reported as a function of the Ag/(Ag + Cu) ratio. The extent of band tailing is shown to decrease with increasing Ag. This is verified by comparing the optical band gap extrapolated from transmission data with the position of the room‐temperature photoluminescence peak; these values converge for the pure‐Ag compound. Additionally, the pinning of the Fermi level in CZTSSe, attributed to heavy defect compensation and band tailing, is not observed in the pure‐Ag compound, offering further evidence of improved electronic structure. Finally, a device efficiency of 10.2% is reported for a device containing 10% Ag (no antireflection coating); this compares to ≈9% (avg) efficiency for the baseline pure‐Cu CZTSe.  相似文献   

5.

The need for an easy to fabricate perfect and narrowband light absorber in the visible range of electromagnetic (EM) spectrum has always been in demand for many scientific and device applications. Here, we propose a metal-dielectric-metal (MDM) 1-D grating plasmonic structure as a perfect narrow band light absorber in the visible and its application in glucose detection. The proposed structure consists of a 1- D grating of gold on the top of a dielectric layer on a gold film. Optimization for dielectric grating index (n), grating thickness (t), grating width (W), and grating period (P) has been done to improve the performance of plasmonic structure by calculating its quality factor and figure-of-merit (FOM). The optimized plasmonic structure behaves as a perfect narrowband light absorber. The flexibility to work at a specific wavelength is also offered by the proposed structure through an appropriate selection of the geometrical parameters and refractive index of the dielectric grating. The equivalent RC model is used to understand different components of the proposed structure on the optical response. The absorption response of the structure is invariant to the incident angle. Moreover, the calculated absorbance of the proposed plasmonic structure is ~ 100% with a narrow full-width half maxima (FWHM) of ~ 2.8 nm. We have numerically demonstrated a potential application of the proposed MDM absorber as a plasmonic glucose sensor in the visible range with detection sensitivity in the range of 140 to 195 nm/RIU.

  相似文献   

6.
The plasmonic effect is introduced in solar thermal areas to enhance light harvest and absorption. The optical properties of plasmonic nanofluid are simulated by finite difference time domain (FDTD) method. Due to the excitation of localized surface plasmon resonance (LSPR) effect, an intensive absorption peak is observed at 0.5 μm. The absorption characteristics are sensitive to particle size and concentration. As the particle size increases, the absorption peak is broadened and shifted to longer wavelength. The absorption of SiO2/Ag plasmonic nanofluid is improved gradually as the volume concentration increases, especially in the UV region. The absorption edge is shifted from 0.6 to 1.0 μm as the volume concentration increases from 0.001 to 0.01. The thermal simulation of suspended SiO2/Ag nanoparticle shows a uniform temperature rise of 17.91 K under solar irradiation (AM 1.5), while under the same condition, the temperature rises in Ag nanoparticle and Al nanoparticle are 11.12 and 5.39 K, respectively. The core/shell plasmonic nanofluid exhibits a higher photothermal performance, which has a potential application in photothermal areas. A higher temperature rise can be obtained by improving the incident light intensity or optical absorption properties of nanoparticles.  相似文献   

7.

We demonstrate the optical response of metal nanoparticles and their interaction with organic-inorganic perovskite (methyl ammonia lead halide (CH3NH3PbI3)) environment using discrete dipole approximation (DDA) simulation technique. Important optical properties like absorption, scattering, and electric field calculations for metal nanoparticle using different geometry have been analyzed. The metal nanoparticles embedded in the perovskite media strongly support surface plasmon resonances (SPRs). The plasmonic interaction of metal nanoparticles with perovskite matrix is a strong function of MNP’s shape, size, and surrounding environment that can manipulate the optical properties considerably. The cylindrical shape of MNPs embedded in perovskite environment supports the SPR which is highly tunable to subwavelength range of 400–800 nm. Wide range of particle sizes has been selected for Ag, Au, and Al spherical and cylindrical nanostructures surrounded by perovskite matrix for simulation. The chosen hybrid material and anisotropy of structure together make a complex function for resonance shape and width. Among all MNPs, 70-nm spherical silver nanoparticle (NP) and cylindrical Ag NP having diameter of 50 nm and length of 70 nm (aspect ratio 1.4) generate strong electric field intensity that facilitates increased photon absorption. The plasmonic perovskite interaction plays an important role to improve the absorption of photon inside the thin film perovskite environment that may be applicable to photovoltaics and photonics.

  相似文献   

8.
Ag-loaded TiO2 (Ag/TiO2) nanocomposites were prepared by microwave-assisted chemical reduction method using tetrabutyl titanate as the Ti source. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption isotherms, UV–vis absorption spectrum, X-ray photoelectron spectrum, photoluminescence spectrum, and Raman scattering spectrum, respectively. Results revealed that Ag nanoparticles (NPs) were successfully deposited on TiO2 by reduction of Ag+, and the visible light absorption and Raman scattering of TiO2 were enhanced by Ag NPs based on its surface plasmon resonance effect. Besides, Ag NPs could also effectively restrain the recombination of photogenerated electrons and holes with a longer luminescence life time. In addition, photocatalytic reduction of CO2 with H2O on the composites was conducted to obtain methanol. Experimental results indicated that Ag-loaded TiO2 had better photocatalytic activity than pure TiO2 due to the synergistic effect between UV light excitation and surface plasmon resonance enhancement, and 2.5 % Ag/TiO2 exhibited the best activity; the corresponding energy efficiency was about 0.5 % and methanol yield was 405.2 μmol/g-cat, which was 9.4 times higher than that of pure TiO2. Additionally, an excitation enhancement synergistic mechanism was proposed to explain the experimental results of photocatalytic reduction of CO2 under different reaction conditions.  相似文献   

9.

In this paper, the idea of square fractal geometry has been utilized to introduce a tunable wideband graphene-based perfect plasmonic absorber in the near-infrared region. It consists of a MgF2 layer and an array of gold squares fractal loaded on a graphene layer. In the designed absorber a single layer of graphene has been used instead of multilayered graphene structures. The structure is polarization-insensitive under normal incidence due to the geometric symmetry. The absorption and bandwidth of the structure are almost insensitive to the incident angle up to 15° and 45° for TE and TM polarizations, respectively. Moreover, by choosing appropriate structural parameters, the resonance wavelength of the desired plasmonic absorber can be controlled. The absorption of the introduced structure can be tuned by changing the chemical potential of the graphene. Therefore, the proposed fractal absorber can act as switch and inverter at λ = 1995 nm. Furthermore, the equivalent circuit model of the absorber has been derived to confirm the validity of the simulation results. The superiorities of our fractal absorber are wide full-width at half-maximum of 406 nm, multi-applicant, perfect absorption, and fabrication feasibility due to the simple structure with the maximum absorption tolerance error of 5.12%.

  相似文献   

10.
TiO2 nanotube arrays (TiO2 NTs) were fabricated by anodic oxidation and then Ag nanoparticles (Ag NPs) were assembled in TiO2 NTs (Ag/TiO2 NTs) by microwave-assisted chemical reduction. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence spectrum (PL), UV–vis absorption spectrum (UV–vis), and Raman spectrum, respectively. The results showed that Ag NPs were well dispersed on the surface of TiO2 NTs with metallic state. The surface plasmon resonance (SPR) effect of Ag NPs could extend the visible light response and enhance the absorption capacity of TiO2. Furthermore, Ag NPs could also restrain the recombination of photo-generated electron–hole pairs of TiO2 NTs efficiently. The methylene blue photodegradation experiment proved that the SPR phenomenon had an effect on photoreaction enhancement. The results of photocatalytic water splitting indicated that Ag/TiO2 NTs samples had better photocatalytic performance than pure TiO2 NTs. The corresponding hydrogen evolution rate of Ag/TiO2 NTs prepared with 0.002 M AgNO3 solution was 3.3 times as that of pure TiO2 NTs in the test condition. Additionally, the mechanism of catalyst activity enhanced by SPR effect was proposed.  相似文献   

11.

Graphene can be utilized as a tunable material for a wide range of infrared wavelength regions due to its tunable conductivity property. In this paper, we use Y-shaped silver material resonator placed over the top of multiple graphene silica-layered structures to realize the perfect absorption over the infrared wavelength region. We propose four different designs by placing the graphene sheet over silica. The absorption and reflectance performance of the structures have been explored for 1500- to 1600-nm wavelength range. The proposed design also explores the absorption tunability of the structure for the different values of graphene chemical potential. We have reported the negative impedance for the perfect absorption for proposed metamaterial absorber structures. All the metamaterial absorbers have reported 99% of its absorption peaks in the infrared wavelength region. These designs can be used as a tunable absorber for narrowband and wideband applications. The proposed designs will become the basic building block of large photonics design which will be applicable for polariser, sensor, and solar applications.

  相似文献   

12.
The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.  相似文献   

13.
In this work, the effect of circular nanocavity on light trapping in a c-Si solar cell was studied by finite difference time domain (FDTD) simulation. The structure of the solar cell was considered to be Si3N4/c-Si/Ag, where the Ag layer was pattered and conformal growth of Si and Si3N4 was considered. The absorption spectra in the thin Si layer were determined and found 40 times higher at the infrared region (beyond 800 nm). For qualitative analysis, the short-circuit current of the solar cell was determined computationally by AM 1.5G solar illumination and found to be 2.1 times higher in the case of nanocavity as that compared to un-patterned solar cell. The enhancement in absorption in the solar cell is attributed to the different plasmonic modes coupled in the thin c-Si layer. The incident angle-dependent study was performed to observe the effect on enhancement in wide-angle incidence. The thickness-dependent study confirms 2.1 to 1.75 times enhancement in short-circuit current in 100- to 250-nm-thick c-Si layer. Therefore, this observation suggests that this structure has good prospect in achieving high conversion efficiency while reducing the device cost.  相似文献   

14.
A efficient indium tin oxide (ITO)‐free transparent electrode based on an improved Ag film is designed by introducing small amount of Al during co‐deposition, producing ultrathin and smooth Ag film with low loss. A transparent electrode as thin as 4 nm is achieved by depositing the film on top of Ta2O5 layer, and organic solar cells based on such ultrathin electrode are built, producing power conversion efficiency over 7%. The device efficiency can be optimized by simply tuning Ta2O5 layer thickness external to the organic photovoltaic (OPV) structure to create an optical cavity resonance inside the photoactive layer. Therefore Ta2O5/Al‐doped Ag films function as a high‐performance electrode with high transparency, low resistance, improved photon management capability and mechanical flexibility.  相似文献   

15.

We present a multi-band terahertz absorber formed by periodic square metallic ribbon with T-shaped gap and a metallic ground plane separated by a dielectric layer. It is demonstrated that absorption spectra of the proposed structure consist of four absorption peaks located at 1.12, 2.49, 3.45, and 3.91 THz with high absorption coefficients of 98.0, 98.9, 98.7, and 99.6%, respectively. It is demonstrated that the proposed absorber has the tunability from single-band to broadband by changing the length of square metallic ribbon and we can also select or tune the frequencies which we want to use by changing polarization angles. Importantly, the quality factor Q at 3.91 THz is 30.1, which is 5.6 times higher than that of 1.12 THz. These results indicate that the proposed absorber has a promising potential for devices, such as detection, sensing, and imaging.

  相似文献   

16.

A five-band polarization-insensitive perfect metamaterial absorber (PMA) is reported in this paper for THz detection and sensing applications. The proposed absorber is constructed using interconnected circular ring elements enclosed by a square loop. The ring elements are interconnected using short strip lines which increases the electrical length to offer resonance at the lower frequencies of the THz regime without increasing the electrical length. The proposed absorber has a footprint of 0.12 λeff?×?0.12 λeff where λeff is the effective wavelength calculated at the lowest operating frequency. The absorber provides 92%, 84%, 90%, 100%, and 100% absorption at 0.24, 0.56, 0.65, 0.82, and 0.95 THz, respectively. The proposed structure offers structural symmetry, and hence, it is polarization-insensitive. The proposed five-band absorber has good angular stability consistent with many research works reported in the literature and has a small frequency ratio of 1:2.3:2.7:3.4:3.9. The proposed absorber can be used as a permittivity sensor and its sensitivity is estimated to vary from 5.8 GHz/permittivity unit (PU) to 23.56 GHz/PU.

  相似文献   

17.

In this paper, we have inspected the optical characteristics of one-dimensional periodic structure (1DPS) of TiO2 and MgF2 dielectric materials with defect layer of liquid crystal (LC) sandwiched with two silver layers, i.e., (TiO2|MgF2)3|Ag|LC|Ag|(TiO2/MgF2)3 using transfer matrix method (TMM). The optical tunable properties of considered periodic structures investigated at different incident angles and temperatures for TE and TM modes. Our study shows that absorption peak of 1DPS varies with incident angle and temperature. The defect layer (Ag-LC-Ag), sandwiched LC within two metallic (Ag) layers, exhibits the surface plasmon waves at the metal LC interfaces. The effect of surface plasmon waves can be better understand through the optical sensing property of such defect periodic structure. The detailed study concludes that such a type of one-dimensional periodic structure (1DPS) may be useful to design a tunable sensor and monochromatic filter.

  相似文献   

18.
Wu  Jipeng  Liang  Yanzhao  Guo  Jun  Jiang  Leyong  Dai  Xiaoyu  Xiang  Yuanjiang 《Plasmonics (Norwell, Mass.)》2020,15(1):83-91

In this paper, Tamm plasmons with topological insulators in a composite structure consisting of Bi2Se3, spacer layer, and one-dimensional photonic crystal (1DPC) have been demonstrated theoretically. The perfect absorption has been realized in the terahertz regime because of the optical Tamm states (OTSs) excited at the interface between Bi2Se3 and 1DPC. The perfect absorption can be realized for both TE and TM waves, and it is noted that the perfect absorption can be obtained at any incident angle by simultaneously changing the wavelength of incident light for TE-polarizations. Moreover, the perfect absorption can be realized at different wavelengths with the change of the chemical potential and the thickness of Bi2Se3. The thickness and the dielectric constant of the spacer layer will also play a vital role in the performance of the perfect absorber. Especially, the multichannel perfect absorption phenomenon can be achieved by choosing the appropriate thickness of the spacer layer. This tunable and multichannel terahertz perfect absorber has great application potential in the solar energy, photodetection, and THz biosensor.

  相似文献   

19.

In the present report, we focused on the detail study of the optical properties and structural characterization of the Ag NPs for the nanobioconjugate analysis and detection of the conformational structural change of the Hb. The detail optical and structural analysis of Ag NPs has been studied from UV–Vis absorption, emission spectrum, XRD, and HRTEM study. The proteins/Hb are attached immediately onto Ag NPs surface when NPs touch the biological fluids, forming protein corona (PC), which gives their biological identity. The NPs-PC bioconjugate is, more specifically, the true identity of NPs in the physiological world. The adsorption of Hb with Ag NP surfaces has been studied by monitoring the soret band and tryptophan band of Hb. The dynamics of the Hb adsorption on the Ag NPs showed the time constant of surface binding t1?=?5.79 min and 10.23 min and surface reorganization t2?=?500 min and 251.75 min with the use of small and large concentrations of Ag NPs, respectively. The absorption peak shape and size around the wavelength, λ ≈ 406.2 nm of the bioconjugate has been examined by Gaussian and Lorentz curve fitting analysis. The bioconjugate along with the PC formation has been analyzed by HRTEM images and DLS observations. The tertiary deformation of Hb and energy transfer efficiency connecting Ag NPs and Hb are discussed from the emission-quenching phenomenon. The change of the secondary structural elements (α-helix, β-sheets, intermolecular aggregates, intramolecular aggregates) of the bioconjugate has been analyzed from FTIR spectrum.

  相似文献   

20.
We propose a novel polarization independent Salisbury screen absorber to provide tunable resonant absorption at terahertz (THz) frequencies. The Salisbury screen absorber is designed by using a planar array of thin gold nanodisks arranged in a square lattice. Certain configurations of Salisbury screen have multiple distinctive absorption bands that support near-unity/FWHM absorption bandwidth reaching 36 THz/169 THz, respectively. Moreover, the absorption bandwidth depends upon the optical thickness of the dielectric spacer between the metasurface and the metallic ground plane. The proposed tunable Salisbury screen absorber can find practical applications in photonic detection, imaging, sensing, and solar cells at optical frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号