首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasmonics - We report on our numerical work concerning a 3D planar nano-structure metamaterial exhibiting classical electromagnetically induced transparency (Cl-EIT). The interaction between two...  相似文献   

2.
In this paper, we propose an all-dielectric metasurface to realize the linear-to-circular polarization conversion of resonantly transmitted waves. This metasurface is composed of two intersection bars and four circle bricks. It has numerically demonstrated that the electromagnetic (EM) couplings between dielectric bar and bricks lead to the famous electromagnetically induced transparent (EIT) effect. Subsequently, based on Mie-type EIT resonances for two incident polarizations, the linear-to-circular polarization conversion occur at about 0.47 THz. More importantly, the thickness of our device is subwavelength and it is very transparency for EM waves. We also investigate the dependences of device performance on incident angles of EM waves and structure thicknesses. Device good performance is almost kept at about 0.47 THz for slightly incident angle tilts (θ ≤?30°) and tiny changes of substrate thickness. But device performance is strongly dependent on dielectric thickness. These results are very important for its integration to the existing terahertz devices, or its application to future polarization controls.  相似文献   

3.
Low-loss electromagnetically induced transparency (EIT) and asymmetric Fano line shapes are investigated in a simple planar silicon dimer resonator. The EIT and Fano effects emerge due to near-field coupling of the modes supported by both the nanoparticles in a dimer structure. Different configurations of the dimer nanostructure are analyzed, which provide distinct EIT and Fano resonances. Furthermore, the tunability of EIT and Fano resonant modes are incorporated by changing the structural parameters. It is also found that the dimer resonator exhibits high Q factor and large electromagnetic field enhancement at Fano resonance and EIT window due to extremely low absorption loss. Such values and narrow resonances are supposed to be useful highly sensitive sensors and slow-light applications.  相似文献   

4.
Pang  Shaofang  Huo  Yiping  Xie  You  Hao  Limei 《Plasmonics (Norwell, Mass.)》2017,12(4):1161-1168
Plasmonics - An analog of electromagnetically induced transparency (EIT) is investigated in a metal-insulator-metal (MIM) waveguide structure consisting of a stub waveguide and a side-coupled cross...  相似文献   

5.
The parametric effect of electromagnetically induced transparency (EIT) is studied in the case of quasi-transverse propagation of an extraordinary wave in the vicinity of the upper hybrid resonance in a cold plasma. The question is investigated of whether the waves that propagate in a smoothly inhomogeneous medium (from the transparency region in the vicinity of the upper hybrid resonance into vacuum or in the opposite direction) can reach the EIT region. The features of the quasi-transverse propagation of an extraordinary wave at the electron cyclotron resonance frequency in the quasi-EIT regime are also considered. It is shown that, in this situation, the parametric effects modify the polarization of the wave, with the result that its absorption increases substantially (by one to two orders of magnitude).  相似文献   

6.
A graphene-based metamaterial with tunable electromagnetically induced transparency is numerically studied in this paper. The proposed structure consists of a graphene layer composed of H shape between two cut wires, by breaking symmetry can control EIT-like effects and by increasing the asymmetry in the structure has strong coupling between elements. It is important that the peak frequency of transmission window can be dynamically controlled over a broad frequency range by varying the chemical potential of graphene layer. The results show that high refractive index sensitivity and figure of merit can be achieved in asymmetrical structures which is good for sensing applications. We calculated the group delay and the results show we can control the group velocity by varying the S parameter in asymmetrical structure. The characteristics of our system indicate important potential applications in integrated optical circuits such as optical storage, ultrafast plasmonic switches, high performance filters, and slow-light devices.  相似文献   

7.
We have numerically investigated an analog of electromagnetically induced transparency (EIT) in a metal-dielectric-metal (MDM) waveguide bend. The geometry consists of two asymmetrical stubs extending parallel to an arm of a straight MDM waveguide bend. Finite-difference time-domain simulations show that a transparent window is located at 1550 nm, which is the phenomenon of plasmonic-induced transparency (PIT). Signal wavelength is assumed to be 820 nm. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity-cavity separations. Large group index up to 73 can be obtained at the PIT window. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nano-ring, the coupling distance, and the deviation length between the stub and the nano-ring is studied in a step further. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. For indirect coupling, formation of transparency window is determined by resonance detuning, but, evolution of transparency is mainly attributed to the change of the coupling distance. Theoretical results may provide a guideline for control of light in highly integrated optical circuits. The characteristics of our plasmonic system indicate a significant potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter, and slow light devices.  相似文献   

8.
In this paper, a tunable slow light 2D metamaterial is presented and investigated. The metamaterial unit cell is composed of three metallic strips as radiative and non-radiative modes. Once introducing asymmetry, a transparency window induced by coupling between the dark and bright modes is observed. The transmission characteristics and the slow light properties of the metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impact of asymmetric parameter on transparency window is also investigated. Simulation results show the spectral properties and the group index of the proposed 2D metamaterial can be tunned by adjusting asymmetric structure parameter, temperature and also the metal used in the metamaterial. Furthermore, the electromagnetic field distributions, excited surface currents, induced electric dipole and quadruples, and slow light properties of the metamaterial are investigated in details as well as transmission spectral responses. The outstanding result is that, the 2D-metamaterial is in a high decrease of the group velocity and therefore slow light applications, because in the best state, the group velocity in our structure decreases by a factor of 221 at T=100 K using copper as metal in optimization asymmetric case.  相似文献   

9.
A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.  相似文献   

10.
In this letter, a novel hybrid metamaterial consisting of periodic array of graphene nano-patch and gold split-ring resonator has been theoretically proposed to realize an active control of the electromagnetically induced transparency analog in the mid-infrared regime. A narrow transparency window occurs over a wide absorption band due to the coupling of the high-quality factor mode provided by graphene dipolar resonance and the low-quality factor mode of split-ring resonator magnetic resonance, which is interpreted in terms of the phase change and surface charge distribution. In addition to the obvious dependence of the spectral feature on the geometric parameters of the elements and the surrounding environmental dielectric constant, our proposed metamaterial shows great tunabilities to the transparency window by tuning the Fermi energy of the graphene nano-patch through electric gating and its electronic mobility without changing the geometric parameters. Furthermore, our proposed metamaterial combines low losses with very large group index associated with the resonance response in the transparency window, showing it suitable for slow light applications and nanophotonic devices for light filter and biosensing.  相似文献   

11.
He  Yuanhao  Wang  Ben-Xin  Lou  Pengcheng  Xu  Nianxi  Wang  Xiaoyi  Wang  Yanchao 《Plasmonics (Norwell, Mass.)》2020,15(6):1997-2002

In the fields of communication and sensing, resonance bandwidth is a very critical index. It is very meaningful to implement a broadband resonance device with a simple metamaterial structure in the terahertz band. In this paper, we propose a simple metamaterial structure which consists of one horizontal metal strip and two vertical metal strips. This structure can achieve an electromagnetically induced transparency-like (EIT-like) effect in the frequency range of 0.1~3.0 THz to obtain a transparent window with a resonance bandwidth as high as 1.212 THz. When the relative distance between two vertical metal strips is changed, the bandwidth can be effectively controlled. Furthermore, we found that the EIT-like effect can be actively adjusted by replacing vertical metal strips with photosensitive silicon.

  相似文献   

12.
Parametric effects of lasing without inversion and electromagnetically induced transparency in classical systems are considered. The characteristic features of the effect of lasing without inversion in ensembles of classical electrons are analyzed using an “inversionless” cyclotron maser as an example. A theory of the effect of electromagnetically induced transparency is developed for electron cyclotron waves in a high-temperature plasma. Possible applications of these two effects in plasma physics and microwave electronics are discussed.  相似文献   

13.
A new metamaterial absorber is designed and characterized numerically for the harvesting of solar energy. The design is composed of three layers in which the interaction among them gives rise to the plasmonic resonances. The main operation frequency range of the proposed structure is chosen to be the visible regime. However, the design is also analyzed for the infrared and ultraviolet regimes. In order to characterize the absorber, some parametric studies with respect to the dimensions of the structure are carried out. According to the results, it is found that the proposed metamaterial absorber has 98.2 % absorption capability at 445.85 THz and 99.4 % absorption capability between 624 and 658.3 THz. Moreover, the polarization dependency of the structure is examined and it is found that the design operates well as a perfect absorber with polarization independency for the studied frequency range. As a result, the proposed metamaterial absorber can be used for solar energy harvesting as it provides multiple perfect absorption bands in the visible regime.  相似文献   

14.
15.
Qu  Zeng  Xu  Yongqing  Zhang  Binzhen  Duan  Junping  Tian  Ying 《Plasmonics (Norwell, Mass.)》2020,15(1):301-308

In this paper, an electromagnetically induced transparency-like metamaterial for terahertz is designed. The structure is based on cross-shaped and SRRs composite elements. It can achieve dual-frequency transparent window in a wide frequency band and is insensitive to electromagnetic wave polarization. The resonance points of transmission peaks are 198.55 and 254.18 GHz, respectively. The electromagnetic transmittance can reach 95.6% and 97.7%, respectively, which has excellent electromagnetic transmission effect. The measured results are in good agreement with the trend of simulation curve. At the same time, flexible polyimide with stable performance is selected as the base material of metamaterial dielectric, which can be widely used in microwave fields such as filters, sensors, and slow light devices.

  相似文献   

16.

We theoretically demonstrate and investigate plasmonically induced reflectance (PIR) in a new planar metamaterial with two completely different approaches. Here, we not only show that broken symmetry is a general strategy to create electromagnetically induced reflectance (EIR)-like effect but also demonstrate that the nanoplasmonic EIR can be realized even without broken symmetry via the excitation of the higher-order plasmonic modes in the same designed planar metamaterial. In nanophotonics, plasmonic structures enable large field strengths within small mode volumes. Therefore, combining EIR with nanoplasmonics would open up the way toward ultracompact sensors with extremely high sensitivity. In the second approach of creating the PIR of our proposed nanostructure, the restrictions on size are partially relaxed, making fabrication much easier. Their interactions and coupling between plasmonic modes are investigated in detail by analyzing field distributions and spectral responses. Also, we show that the PIR frequency position depended very sensitively on the dielectric surrounding. Furthermore, the narrow and fully modulated PIR features due to the extraordinary reduction of damping may serve for designing novel devices in the field of chemical and biomedical sensing.

  相似文献   

17.
In this paper, we propose a novel planar semiconductor metamaterial which consists of two H-shape structures which are nested together and composed of InSb deposited on a thin quartz substrate. The two H-shape structures serve as the bright modes and are exited strongly by the incident wave and interact with each other. This coupling leads to a powerful plasmonically induced transparency (PIT) effect at terahertz frequencies. This scheme provides a way to achieve slow light, and the corresponding group index can reach a value of 1300. We calculated group velocity dispersion (GVD) and saw this structure was a low group velocity dispersion (LGVD) system. Therefore, the proposed structure will be useful in designing slow-light devices, optical buffers, delay lines, and ultra-sensitive sensors. We also showed that the proposed design is tunable, namely changes in geometric parameters and type of semiconductor can largely change the group index. In addition, we considered another application for our design that is a thermal dual-band terahertz metamaterial modulator and numerically obtained frequency and amplitude modulation depth, tunability bandwidth, and loss for this device. We obtained an amplitude modulator depth of 99.7 % and a frequency modulator depth of 47 % that verified this structure can be used in wireless communication and encode information systems in the THz regime.  相似文献   

18.
In this paper, we propose a new structure which is achieved via the combination of twist conjugated gammadion and four-L resonators pairs. The proposed chiral metamaterial can achieve dispersionless and giant optical activity simultaneously. The polarization ellipticity is lower than 0.46° through all function bands, and the polarization azimuth rotation angle is larger than 90.3° from 2.37 to 2.69 THz. Specifically, the structure can achieve 90° dispersionless polarization rotation at f?=?2.57 THz. The optical activity is optimized through changing the parameters of the chiral structure and the physical mechanism is also analyzed based on surface current distribution.  相似文献   

19.
The nucleocapsid (N) protein of peste des petits ruminants virus (PPRV) with a conserved amino acid usage pattern plays an important role in viral replication. The primary objective of this study was to estimate roles of synonymous codon usages of PPRV N gene and tRNA abundances of host in the formation of secondary structure of N protein. The potential effects of synonymous codon usages of N gene and tRNA abundances of host on shaping different folding units (α-helix, β-strand and the coil) in N protein were estimated, based on the information about the modeling secondary structure of PPRV N protein. The synonymous codon usage bias was found in different folding units in PPRV N protein. To better understand the role of translation speed caused by variant tRNA abundances in shaping the specific folding unit in N protein, we modeled the changing trends of tRNA abundance at the transition boundaries from one folding unit to another folding unit (β-strand → coil, coil → β-strand, α-helix → coil, coil → α-helix). The obvious fluctuations of tRNA abundance were identified at the two transition boundaries (β-strand → coil and coil → β-strand) in PPRV N protein. Our findings suggested that viral synonymous codon usage bias and cellular tRNA abundance variation might have potential effects on the formation of secondary structure of PPRV N protein.  相似文献   

20.
Jin  Changming  Liu  Can  Tan  Qiulin  Zhang  Lei  Zhang  Yanan 《Plasmonics (Norwell, Mass.)》2022,17(3):1183-1190

Numerical and theoretical studies were conducted on the plasmon induced transparency (PIT) of the symmetrical structure of Dirac semi-metal films (DSFS). The films have a parallel strip and split resonant ring structure. After analysing the surface current intensity and distribution, it was found that the electromagnetically induced transparency is as a result of destructive interference between these two structures, with the amplitude modulation depth of the frequency of the transmission window reaching as high as 99.09%. Moreover, by adjusting the Fermi level of the DSFS, the Fermi level changed from 50 to 90 meV, and the transmission window blue-shifted from 0.529 to 0.799 THz. The transmission peak frequency was found to have a linear relationship with the Fermi level. Similarly, the transmission phase and group delay under different Fermi levels was investigated. The positive group delay of the film reaches 7.026 ps, which provides a direction for new applications of terahertz, such as optical storage and slow optical devices.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号