首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose an all-dielectric metasurface to realize the linear-to-circular polarization conversion of resonantly transmitted waves. This metasurface is composed of two intersection bars and four circle bricks. It has numerically demonstrated that the electromagnetic (EM) couplings between dielectric bar and bricks lead to the famous electromagnetically induced transparent (EIT) effect. Subsequently, based on Mie-type EIT resonances for two incident polarizations, the linear-to-circular polarization conversion occur at about 0.47 THz. More importantly, the thickness of our device is subwavelength and it is very transparency for EM waves. We also investigate the dependences of device performance on incident angles of EM waves and structure thicknesses. Device good performance is almost kept at about 0.47 THz for slightly incident angle tilts (θ ≤?30°) and tiny changes of substrate thickness. But device performance is strongly dependent on dielectric thickness. These results are very important for its integration to the existing terahertz devices, or its application to future polarization controls.  相似文献   

2.
We present high-quality (high-Q) Fano resonances in all-dielectric metasurfaces consisting of a periodic array of air holes on silicon (Si) film, deposited on the top of quartz substrate. With the control of the radius difference Δr and center distance Δd between the air holes, two asymmetric all-dielectric metasurfaces are proposed to achieve extremely high-Q Fano resonances. Numerical method with finite difference time domain and equivalent circuit model is employed to analyse the excitation mechanism of the sharp Fano resonances. It is shown that the high-Q Fano resonances come from the interference of two Fabry-Perot resonances, resulting in an extremely narrow window. Moreover, we also demonstrate that the high-Q Fano resonances can also be realized as electromagnetic wave is obliquely incident on the symmetric all-dielectric metasurface. Finally, we show the high-Q Fano resonances caused by asymmetric configurations can coexist with the Fano resonances in the symmetric configuration induced by oblique incidence. As a result, a tri-band Fano resonance is obtained. It is expected that our results will provide important mechanisms for tuning and switching a wide variety of optical devices such as angular sensors, filters, switches, and modulators.  相似文献   

3.
Plasmonics - This paper proposes a structure composed of a horizontal metal strip resonator (SR) and four C-shaped ring resonators (CRR) to obtain a broadband electromagnetic induction transparency...  相似文献   

4.
In this letter, a novel hybrid metamaterial consisting of periodic array of graphene nano-patch and gold split-ring resonator has been theoretically proposed to realize an active control of the electromagnetically induced transparency analog in the mid-infrared regime. A narrow transparency window occurs over a wide absorption band due to the coupling of the high-quality factor mode provided by graphene dipolar resonance and the low-quality factor mode of split-ring resonator magnetic resonance, which is interpreted in terms of the phase change and surface charge distribution. In addition to the obvious dependence of the spectral feature on the geometric parameters of the elements and the surrounding environmental dielectric constant, our proposed metamaterial shows great tunabilities to the transparency window by tuning the Fermi energy of the graphene nano-patch through electric gating and its electronic mobility without changing the geometric parameters. Furthermore, our proposed metamaterial combines low losses with very large group index associated with the resonance response in the transparency window, showing it suitable for slow light applications and nanophotonic devices for light filter and biosensing.  相似文献   

5.
Liu  Dongdong  Sun  Yan  Fan  Qiubo  Mei  Maofei  Wang  Jicheng  Pan  Yue-Wu  Lu  Jian 《Plasmonics (Norwell, Mass.)》2016,11(6):1621-1628

Plasmonically induced transparency (PIT) effect in a metal–insulator–metal waveguide coupled to asymmetric multi-rectangle resonators is investigated numerically. By adjusting parameters of resonators, we cannot only realize single, double, or treble PIT peaks in the compact structure, but also induce an off-to-on PIT optical response. Numerical simulation by finite element method was conducted to verify our designs. This proposed structure, hence has potential applications for ultra-compact optoelectronic devices at communication band.

  相似文献   

6.
In this paper, we demonstrated a low-loss and high-transmission analogy of electromagnetically induced transparency based on all-dieletric metasurface. The metamaterial unit cell structure is composed of two mutually perpendicular silicon nanoscale bars. Under the joint effects of the neighboring meta-atoms’ coherent interaction and significant low absorption loss, the transmission and the Q-factor can reach up to 93 % and 139, respectively. Moreover, we use the coupled harmonic oscillator model to analyze the near field interaction between the two elements in the electromagnetically induced transparency (EIT) metamaterial unit cell qualitatively and the effects of parameters on EIT. The figure-of-merit of 42 and the group delay of 0.65 ps are obtained. These characteristics make the metamaterial structure with potential to apply for ultrafast switches, sensor, and slow-light devices.  相似文献   

7.
Binfeng  Yun  Ruohu  Zhang  Guohua  Hu  Yiping  Cui 《Plasmonics (Norwell, Mass.)》2016,11(4):1157-1162
Plasmonics - A plasmonic waveguide system composed of metal-insulator-metal (MIM) stub coupled with circular cavity resonator was proposed to produce ultra sharp Fano resonances, which resulted...  相似文献   

8.
Plasmonics - We report on our numerical work concerning a 3D planar nano-structure metamaterial exhibiting classical electromagnetically induced transparency (Cl-EIT). The interaction between two...  相似文献   

9.
A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.  相似文献   

10.
In this paper, a tunable slow light 2D metamaterial is presented and investigated. The metamaterial unit cell is composed of three metallic strips as radiative and non-radiative modes. Once introducing asymmetry, a transparency window induced by coupling between the dark and bright modes is observed. The transmission characteristics and the slow light properties of the metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impact of asymmetric parameter on transparency window is also investigated. Simulation results show the spectral properties and the group index of the proposed 2D metamaterial can be tunned by adjusting asymmetric structure parameter, temperature and also the metal used in the metamaterial. Furthermore, the electromagnetic field distributions, excited surface currents, induced electric dipole and quadruples, and slow light properties of the metamaterial are investigated in details as well as transmission spectral responses. The outstanding result is that, the 2D-metamaterial is in a high decrease of the group velocity and therefore slow light applications, because in the best state, the group velocity in our structure decreases by a factor of 221 at T=100 K using copper as metal in optimization asymmetric case.  相似文献   

11.
We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.  相似文献   

12.
To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz) were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D) produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil.  相似文献   

13.
Pang  Shaofang  Huo  Yiping  Xie  You  Hao  Limei 《Plasmonics (Norwell, Mass.)》2017,12(4):1161-1168
Plasmonics - An analog of electromagnetically induced transparency (EIT) is investigated in a metal-insulator-metal (MIM) waveguide structure consisting of a stub waveguide and a side-coupled cross...  相似文献   

14.
Cui  Jian  Ji  Boyu  Song  Xiaowei  Lin  Jingquan 《Plasmonics (Norwell, Mass.)》2019,14(1):41-52
Plasmonics - Generation of multiple Fano resonances are theoretically investigated in asymmetry ring-disk and asymmetry split-ring-disk. The effects of structural parameter on multiple Fano...  相似文献   

15.
A simple T-shaped plasmonic nanostructure composed of two perpendicular coupled nanorods is proposed to produce strong Fano resonances. By the near-field coupling between the “bright” dipole and “dark” quadrupole plasmons of the nanorods, a deep Fano dip is formed in the extinction spectrum, which can be well fitted by the Fano interference model. The effects of the geometry parameters including nanorod length, coupling gap size, and coupling location to the Fano resonances are analyzed in detail, and a very high refractive index sensitivity is achieved by the Fano resonance. Also by adjusting the incident polarization direction, double Fano resonances can be formed by the interferences of the dipole, quadrupole, and hexapole plasmons. The proposed nanorod dimer structure is agile, and a trimer which supports double Fano resonances can be easily formed by introducing a third perpendicular coupled nanorod. The proposed T-shaped nanorod dimer structure may have applications in the fields of biological sensing and plasmon-induced transparency.  相似文献   

16.

The transmission property of hexagonal boron nitride at its four photonic topological transitions has been studied. An interesting result is revealed that the angular optical transparency can be achieved at wavelength 12.0494 μm. The numerical results indicate that the transparency window has an angular full width at half maximum of 4° with an optical transmission higher than 0.9 at normal incidence. Besides, corresponding to an angular full width at half maximum narrower than 20°, the wavelength span is about 230 nm. These features may make the hexagonal boron nitride holds promise for applications in private screens and optical detectors.

  相似文献   

17.
18.
You  Yun  Deng  Xiaohua  Shen  Linfang  Wu  Jin-Jei  Yang  Tzong-Jer 《Plasmonics (Norwell, Mass.)》2017,12(2):399-404
Plasmonics - Surface magnetoplasmons (SMPs) in the three-layer structure of semiconductor, dielectric, and photonic crystal (PhC) are theoretically investigated. The PhC portion in the structure is...  相似文献   

19.
A novel metal-insulator-metal (MIM) plasmonic waveguides structure, which is composed by stub waveguide with nanodisk and Fabry-Perot (F-P) resonator, has been proposed and numerically simulated with the finite-difference time-domain (FDTD). Based on the three-level system, the extreme destructive interference between bright and dark resonators gives rise to the distinct plasmonically induced absorption (PIA) response with the abnormal dispersion and novel fast-light feature. Simultaneously, the dramatic double plasmonically induced transparency (PIT) effect with slow-light characteristic can also be achieved in the system. The relationship between the transmission characteristics and the geometric parameters is studied in detail. By optimum design, the modulation depth of the PIA transmission spectrum of 90 % with 0.145 and 0.14 ps fast-light effect can be gained simultaneously, and the peak transmissivity of the double PIT system of 75.2 and 72.8 % with ?0.38 ps slow light-effect can be achieved. The simulated transmission features are in agreement with the temporal-coupled mode theory (CMT). The characteristics of the system indicate an important potential application in integrated optical circuits such as slow-light and fast-light devices, high-performance filter, and optical storage.  相似文献   

20.
Sphingolipid- and cholesterol-rich liquid-ordered (Lo) lipid domains (rafts) are thought to be important organizing elements in eukaryotic plasma membranes. How they form in the sphingolipid-poor cytosolic (inner) membrane leaflet is unclear. Here, we characterize how outer-leaflet Lo domains induce inner-leaflet-ordered domains, i.e., interleaflet coupling. Asymmetric vesicles studied contained physiologically relevant cholesterol levels (∼37 mol %), a mixture of SM (sphingomyelin) and DOPC (dioleoylphosphatidylcholine) in their outer leaflets, and DOPC in their inner leaflets. Lo domains were observed in both leaflets, and were in register, indicative of coupling between SM-rich outer-leaflet-ordered domains and inner-leaflet-ordered domains. For asymmetric vesicles with outer-leaflet egg SM or milk SM, a fluorescent lipid with unsaturated acyl chains (NBD-DOPE) was depleted in both the outer- and inner-leaflet-ordered domains. This suggests the inner-leaflet-ordered domains were depleted in unsaturated lipid (i.e., DOPC) and thus rich in cholesterol. For asymmetric vesicles containing egg SM, outer-leaflet Lo domains were also depleted in a saturated fluorescent lipid (NBD-DPPE), while inner-leaflet Lo domains were not. This indicates that inner- and outer-leaflet Lo domains can have significantly different physical properties. In contrast, in asymmetric vesicles containing outer-leaflet milk SM, which has long acyl chains capable of interdigitating into the inner leaflet, both outer- and inner-leaflet Lo domains were depleted, to a similar extent, in NBD-DPPE. This is indicative of interdigitation-enhanced coupling resulting in inner- and outer-leaflet Lo domains with similar physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号