首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, a tunable plasmonic absorber based on TiN-nanosphere/liquid crystal (LC) nanocomposite in visible and near-infrared regions is proposed. TiN-nanosphere/LC nanocomposite is a combination of titanium nitride (TiN) nanospheres dispersed in a host of LC and plays the main role in post fabrication tunability. The proposed absorber has three more than 90% absorption peaks and the absorption tunability of about 76 nm. It is shown that TiN-nanospheres are able to support localized surface plasmon resonance (LSPR). The Maxwell-Garnett theory is utilized to approximate the permittivity of the composite structure. Also, the effect of geometric parameters on the absorption is studied. Moreover, a single sheet of graphene is utilized to compensate the decrement of the absorption caused by the geometric parameters.  相似文献   

2.
Perfect terahertz (THz) absorption in the modified Otto configuration with the insertion of monolayer graphene sheet has been numerically demonstrated. This perfect absorption originates from the enhancement of the electrical field owing to the excitation of the transverse magnetic (TM) polarized surface plasmons at the interface of two dielectrics with monolayer graphene. It is found that the absorption peak occurs at the specific incident angles, which can be employed for realizing the angular absorbers. We further demonstrate that the angle of the peak absorption and the corresponding wavelength can be manipulated by changing the Fermi energy of monolayer graphene sheet via electrostatic biasing. Moreover, the behaviors of the perfect absorption are strongly dependent on the dielectric constants and thicknesses of the surrounding dielectrics.  相似文献   

3.

In this paper, the idea of square fractal geometry has been utilized to introduce a tunable wideband graphene-based perfect plasmonic absorber in the near-infrared region. It consists of a MgF2 layer and an array of gold squares fractal loaded on a graphene layer. In the designed absorber a single layer of graphene has been used instead of multilayered graphene structures. The structure is polarization-insensitive under normal incidence due to the geometric symmetry. The absorption and bandwidth of the structure are almost insensitive to the incident angle up to 15° and 45° for TE and TM polarizations, respectively. Moreover, by choosing appropriate structural parameters, the resonance wavelength of the desired plasmonic absorber can be controlled. The absorption of the introduced structure can be tuned by changing the chemical potential of the graphene. Therefore, the proposed fractal absorber can act as switch and inverter at λ = 1995 nm. Furthermore, the equivalent circuit model of the absorber has been derived to confirm the validity of the simulation results. The superiorities of our fractal absorber are wide full-width at half-maximum of 406 nm, multi-applicant, perfect absorption, and fabrication feasibility due to the simple structure with the maximum absorption tolerance error of 5.12%.

  相似文献   

4.
In this letter, a novel hybrid metamaterial consisting of periodic array of graphene nano-patch and gold split-ring resonator has been theoretically proposed to realize an active control of the electromagnetically induced transparency analog in the mid-infrared regime. A narrow transparency window occurs over a wide absorption band due to the coupling of the high-quality factor mode provided by graphene dipolar resonance and the low-quality factor mode of split-ring resonator magnetic resonance, which is interpreted in terms of the phase change and surface charge distribution. In addition to the obvious dependence of the spectral feature on the geometric parameters of the elements and the surrounding environmental dielectric constant, our proposed metamaterial shows great tunabilities to the transparency window by tuning the Fermi energy of the graphene nano-patch through electric gating and its electronic mobility without changing the geometric parameters. Furthermore, our proposed metamaterial combines low losses with very large group index associated with the resonance response in the transparency window, showing it suitable for slow light applications and nanophotonic devices for light filter and biosensing.  相似文献   

5.
Nowadays, graphene has many applications in optical instruments, biosensors, gas sensors, photovoltaic cells, and so on. In this study, we aimed at investigating the optical properties of graphene under the influence of plasmons created in one-dimensional photonic crystal structure by making use of the absorption spectrum. We put the gold photonic crystal in adjacent to graphene and placed an antireflection layer on top of it. Then, we studied the behavior of graphene absorption peaks in a near-infrared region. By analyzing the graphene behavior in this region, we observed that graphene absorption was increased up to 40% and graphene absorption value in absorption peak, absorption peak wavelength, absorption spectra width, and also its absorption spectra in a wide wavelength range from 1000 to 2500 nm, could be controlled by making use of different factors such as the substance of antireflection layer and photonic crystal geometric dimensions. This structure can make many applications possible for graphene such as using it to build biosensors to identify uric acid and some of the lipids that have specific significances in detecting atherosclerotic lesions as well as diagnosing the states of disease.  相似文献   

6.

The steering of guided light in surface plasmon resonance (SPR) sensing platforms introduced more than eight decades ago from the first proposed optical sensor in 1983. However, sensing the environmental variation considering transverse modes is still require the attention from the scientist. Here, for the first time, by considering steering of guided light a high-performance SPR sensor base on Otto structure is proposed. By incorporating the graphene and white graphene in to a prism-waveguide configuration, we calculated the excitation of both TE(TM) modes as refractive index is changed from 1 to 1.04. to analysis of the structure finite-difference time-domain (FDTD) is applied. To benchmark of the structure performance parameters including sensitivity, figure of merit, polarization extinction ratio (PER), and insertion loss (IL) are calculated. Numerical results show that maximum sensitivity and figure of merit are obtained for TM modes of 1226 and 27 respectively. In such a case, graphene monolayer is applied. By considering coupling condition, at the μc?=?0.4 eV, the maximum value of PER is 75 dB, and IL is 0.022 dB. Moreover, it is obtained that in all these conditions PER is higher than 8 dB, and IL is less than 0.04 dB.

  相似文献   

7.
Liu  Jian-Xiao  Xie  Xun  Du  Peng  Liu  Yu-Jie  Yang  Hong-Wei 《Plasmonics (Norwell, Mass.)》2019,14(2):353-357

The electromagnetic property of graphene is studied by finite-difference time-domain (FDTD) method. As the graphene has excellent electrical conductivity and high transparency, it has certain advantages as a transparent electrode for solar cells. This paper designs a three-layer film structure composed of graphene, silicon, and silicon dioxide (SiO2). Then, the effects of the chemical potential and the scattering rate of the graphene on the light absorption of the film are studied. The study found that the electromagnetic property of graphene is relatively stable, which is not easily influenced by the external environment. After changing its chemical potential, scattering rate, and other parameters, it is found that the film absorption rate is less affected unless the large range of chemical potential changes; it will lead to a decline in the absorption rate of light.

  相似文献   

8.

In this paper, a graphene-based tunable multi-band terahertz absorber is proposed and numerically investigated. The proposed absorber can achieve perfect absorption within both sharp and ultra-broadband absorption spectra. This wide range of absorption is gathered through a unique combination of periodically cross- and square-shaped dielectrics sandwiched between two graphene sheets; the latter enables it to offer more absorption in comparison with the traditional single-layer graphene structures. The aforementioned top layer is mounted on a gold plate separated by a Topas layer with zero volume loss. Furthermore, in our proposed approach, we investigated the possibility of changing the shapes and sizes of the dielectric layers instead of the geometry of the graphene layers to alleviate the edge effects and manufacturing complications. In numerical simulations, parameters, such as graphene Fermi energy and the dimensions of the proposed dielectric layout, have been optimally tuned to reach perfect absorption. We have verified that the performance of our dielectric layout called fishnet, with two widely investigated dielectric layouts in the literature (namely, cross-shaped and frame-and-square). Our results demonstrate two absorption bands with near-unity absorbance at frequencies of 1.6–2.3 and 4.2–4.9 THz, with absorption efficiency of 98% in 1.96 and 4.62 THz, respectively. Moreover, a broadband absorption in the 7.77–9.78 THz is observed with an absorption efficiency of 99.6% that was attained in 8.44–9.11 THz. Finally, the versatility provided by the tunability of three operation bands of the absorber makes it a great candidate for integration into terahertz optoelectronic devices.

  相似文献   

9.
Wan  Yuan  Tan  Yuanxin  Yang  Yang  Chong  Haining  Meng  Zhaozhong  Wang  Jing 《Plasmonics (Norwell, Mass.)》2022,17(2):843-849

Actively tunable Fano resonance has obvious advantages in applications such as chemical or biological sensors, switches, modulators, and optical filters. In this paper, we studied theoretically the actively tunable Fano resonance in H-like metal-graphene hybrid nanostructures at visible and near-infrared wavelengths. We found that the absorption spectrum of H-like metal-graphene hybrid nanostructures has two resonance peaks, and the absorption spectrum has an obvious blue shift compared with that of the H-like metal nanostructures without graphene. The optical properties of different nanostructures are explained by the electric field distribution. Then, the dependence of the Fano resonance on the nanostructure parameters, refractive index of host materials, and graphene Fermi energy is studied. The wavelength and intensity of absorption spectrum can be manipulated by adjusting the structure parameters and host materials. In addition, the wavelength and intensity of absorption spectrum can be manipulated actively by changing the Fermi energy levels of graphene. This study provides a method for designing the actively tunable Fano resonance in H-like metal-graphene hybrid nanostructures.

  相似文献   

10.
High-resolution electron energy-loss spectroscopy has been used to study the π plasmon in monolayer graphene grown on Pt(111). A quadratic dispersion has been observed, in contrast to the linear dispersion reported for monolayer graphene grown on SiC(0001) and in agreement with recent experiments on graphene/Ni(111). Despite the weak interaction of the monolayer graphene with the Pt(111) surface, our results indicate that the screening by the underlying metal substrate strongly influences both the dispersion relation and the damping processes of the plasmon mode of π electrons.  相似文献   

11.
We study an active modulation of surface plasmon resonance (SPR) of Au nanoparticles based on highly doped graphene in visible and near-infrared regions. We find that compared to the traditional metal SPR, the SPR of Au nanoparticles based on graphene causes a remarkable blue shift. The field intensity in the gap is redistributed to standing wave. The field intensity of standing wave is about one order of magnitude higher than the traditional model. Moreover, the SPR of Au nanoparticles can be actively modulated by varying the graphene Fermi energy. We find the maximum modulation of field intensity of absorption spectra is more than 21.6 % at λ?=?822?nm and the amount of blue shift is 17.4 nm, which is about 2.14 % of the initial wavelength λ 0?=?813.4?nm, with increasing monolayer graphene Fermi energy from 1.0 to 1.5 ev. We find that the SPR sensitivity to the refractive index n of the environment is about 642 nm per refractive index unit (RIU). The SPR wavelengths have a big blue shift, which is about 33 nm, with increasing number of graphene layers from 1 to 3, and some shoulders on the absorption spectra are observed in the models with multilayer graphene. Finally, we study the Au nanorod array based on monolayer graphene. We find that the blue shift caused by the graphene increases from 14 to 24 nm, with increasing gap g y from 10 to 20 nm. Then, it decreases from 24 to 14 nm, with increasing gap g y from 20 to 50 nm. This study provides a new way for actively modulating the optical and optoelectronic devices.  相似文献   

12.

Graphene can be utilized as a tunable material for a wide range of infrared wavelength regions due to its tunable conductivity property. In this paper, we use Y-shaped silver material resonator placed over the top of multiple graphene silica-layered structures to realize the perfect absorption over the infrared wavelength region. We propose four different designs by placing the graphene sheet over silica. The absorption and reflectance performance of the structures have been explored for 1500- to 1600-nm wavelength range. The proposed design also explores the absorption tunability of the structure for the different values of graphene chemical potential. We have reported the negative impedance for the perfect absorption for proposed metamaterial absorber structures. All the metamaterial absorbers have reported 99% of its absorption peaks in the infrared wavelength region. These designs can be used as a tunable absorber for narrowband and wideband applications. The proposed designs will become the basic building block of large photonics design which will be applicable for polariser, sensor, and solar applications.

  相似文献   

13.

In this paper, a non-structured graphene sheet loaded with a sinusoidal-patterned dielectric is introduced as an ultra-wideband metamaterial absorber in terahertz regime. Regardless of conventional structures with multilayered-graphene, a single layer sheet of non-structured graphene is used whereas the proposed structure benefits from dielectric width modulation and cavity method in order to excite continuous graphene plasmon resonances. The structure comprises four layers that two Fabry-Perot cavity mirrors are constructed by upper sinusoidal-patterned dielectric and a gold film. Full wave simulation results demonstrate that a broadband over 90% absorption with absolute bandwidth of 6.58 THz and central frequency of 3.97 THz is achieved under normal TE/TM incident plane wave. The designed structure yields 166% relative bandwidth. According to the symmetric configuration, the absorption spectra of mentioned polarizations are thoroughly close to each other resulting to a polarization insensitive structure. The stability of bandwidth and absorbance of the structure versus angle of incidence, θ, up to 35°/65° for TM/TE polarizations, respectively, and azimuth angle, φ, shows an interesting capability for utilization as detectors and sensors. The simple geometry of utilized graphene layer results in easy fabrication. The designed structure has wideband absorption in THz regime. Moreover, it is more compact than conventional broadband THz absorbers.

  相似文献   

14.
The absorption in graphene is rather low at terahertz frequencies. Here, we present a graphene-embedded photonic crystal structure to realize broadband terahertz absorption in graphene. The approach provides absorption enhancement in the whole terahertz regime (from 0.1 to 10 THz). It is shown that the average absorption in the graphene-embedded photonic crystal can be enhanced in the multiple propagating bands of the photonic crystals. The absorption efficiency can be further improved by optimizing the characteristic frequency, optical thickness ratio in a unit cell, and the angle of incidence on the photonic crystals. A maximum broadband absorption factor of 28.8% was achieved for fixed alternative dielectric materials. The graphene-embedded photonic crystal is promising for terahertz functional devices with broadband response.  相似文献   

15.
The two coplanar graphene strips coupling system supported on substrates is proposed and constructed on a monolayer graphene by spatially varying gate voltages. It is investigated numerically by using the finite-difference time-domain method. Simulation results reveal that despite of no traditional ring, disk, and rectangular geometry resonators used usually in metallic plasmonic filters, this structure based on the edge mode propagation exhibits an original, ultra-narrowband band-stop filtering effect in the mid-infrared region. This filtering effect results from the novel side-coupled resonator formed by the parallel graphene strips. The transmission spectrum is tuned and modified not only by engineering the locations of gate voltages without re-fabricating structures but also via changing substrates. Simulation results are consistent with the theoretical analysis. Our studies hence support the fabrication of ultra-compact planar plasmonic devices in nano-integrated circuits.  相似文献   

16.
In this paper, we proposed plasmonic dimers consisted of two evanescent field coupled graphene monolayer nanodisks. The electromagnetic properties including the split modes with non-degenerate wavelengths, enhancement of the quality factors (Q factors) and mode areas, and the coupling between the fundamental and the first-order whispering-gallery modes are numerically predicted and analyzed systematically. Compared with the single graphene nanodisk, the Q factor of TM4,1 reaches 356 in a dimer with a radius of 5 nm of each nanodisk and an inter-disk gap of 0.4 nm, where the corresponding mode area is as small as 6.88?×?10‐?5(λ 0)2. In addition, the enhanced performances of size-mismatched coupled graphene plasmonic dimers are investigated. This graphene monolayer plasmonic dimer could be one of the fundamental components in the future ultra-high density plasmonic circuit technique, on-chip plasmonic interconnect, and transformation plasmonics. It also could be used as the test-beds for added explorations of cavity quantum electrodynamic experiments.  相似文献   

17.
We present a collection of molecular dynamics computer simulation studies on a model protein-membrane system, namely a cytochrome c monolayer attached to an organic self-assembled monolayer (SAM). Modifications of the system are explored, including the polarity of the SAM endgroups, the amount of water present for hydration, and the coordination number of the heme iron atom. Various structural parameters are measured, e.g., the protein radius of gyration and eccentricity, the deviation of the protein backbone from the x-ray crystal structure, the orientation of the protein relative to the SAM surface, and the profile structures of the SAM, protein, and water. The polar SAM appears to interact more strongly with the protein than does the nonpolar SAM. Increased hydration of the system tends to reduce the effects of other parameters. The choice of iron coordination model has a significant effect on the protein structure and the heme orientation. The overall protein structure is largely conserved, except at each end of the sequence and in one loop region. The SAM structure is only perturbed in the region of its direct contact with the protein. Our calculations are in reasonably good agreement with experimental measurements (polarized optical absorption/emission spectroscopy, x-ray interferometry, and neutron interferometry).  相似文献   

18.
BackgroundThe aim of this work is to investigate the intestinal permeability of lamivudine and explore its absorption mechanism.MethodCaco-2 cells monolayer and single-pass intestinal perfusion (SPIP) were selected for the investigation of lamivudine under different conditions, such as different concentration, absorption time, bidirectional transportation, and transportation with efflux transporters inhibitor. The concentration of lamivudine both in Caco-2 cells monolayer samples and SPIP samples was detected by HPLC-UV. Then the permeability parameters were calculated.ResultsThe established HPLC-UV method reach the requirements for detection. There is no statistically difference between absorption parameters of lamivudine both in Caco-2 cells monolayer and SPIP (P > 0.05) under different dose groups. After transportation with efflux transporters inhibitor, the efflux rate of lamivudine in three dose groups was significantly decreased from 2.67, 2.59 and 2.59 to 1.78, 1.61, and 1.81 respectively. Lamivudine exhibits an absorption mechanism of passive diffusion.ConclusionThe absorption of lamivudine may be related to efflux transporters. In addition, lamivudine is a moderate-permeability drug in Biopharmaceutics Classification System.  相似文献   

19.
This paper presents an effective method to model and analyze graphene-metamaterial (GM) absorbers by using an equivalent circuit model. A reliable and closed formula to describe the absorption mechanism of the GM structure was derived from this approach. With the obtained expressions, the effect of the graphene chemical potential on the absorber’s resonance frequency is able to be predicted. In order to verify this proposed equivalent circuit method, an absorber consists of metamaterial and graphene was simulated and the physical mechanism was well explained. This method provides an effective way to analyze multilayered GM absorbers for the future.  相似文献   

20.

A tunable multi-band metamaterial perfect absorber is designed in this paper. The absorber made of a composite array of gold elliptical and circular disks on a thick metallic substrate, separated by a thin dielectric spacer. The absorptivity and the field enhancement of proposed structures are numerically investigated by the finite difference time domain method. Three absorption peaks (1.15, 1.55, and 2.05 μm) with the maximal absorption of 99.2, 99.7, and 97.3% have been achieved, respectively. By altering the dimensions of associated geometric parameters in the structure, three resonance wavelengths can be tuned individually. Physical mechanism of the multi-band absorption is construed as the resonance of magnetic polaritons. And the absorber exhibits the characteristics that are insensitive to the polarization angle due to its symmetry. The research results can have access to selective control of thermal radiation and the design of multi-band photodetectors.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号