首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Nanocomposite thin films consisting of Cu nanoparticles embedded in silica matrix were synthesized by atom beam co-sputtering technique. Plasmonic, optical, and structural properties of the nanocomposite films were investigated by using ultraviolet (UV)–visible absorption spectroscopy, nonlinear optical transmission, X-ray diffraction (XRD), and low-frequency Raman scattering. UV–visible absorption studies revealed the surface plasmon resonance absorption at 564 nm which showed a red shift with increase in Cu fraction. XRD results together with surface plasmon resonance absorption confirmed the presence of Cu nanoparticles of different size. Low-frequency Raman studies of nanocomposite films revealed breathing modes in Cu nanoparticles. Nanocomposites with lower metal fractions were found to behave like optical limiters. The possibility of controllably tuning the optical nonlinearity of these nanocomposites could enable them to be the potential candidates for applications in nanophotonics.  相似文献   

2.
We have used phosphorescence from erythrosin B to characterize the molecular mobility and dynamic heterogeneity in dry films of amorphous lactose and lactitol from -25 to 120 degrees C. The phosphorescence emission spectra red-shifted and broadened with temperature in both sugars, indicating that both the rate of dipolar relaxation and the extent of inhomogeneous broadening increased dramatically at higher temperature. Phosphorescence intensity decays were well fit using a stretched exponential decay model; the rate constant for non-radiative quenching due to collisions with the matrix was calculated from the lifetimes. Arrhenius plots of this rate were non-linear, increasing very gradually at low and dramatically at high temperatures in both sugars. The rate of quenching was significantly lower in a 1:1 (wt/wt) mixture of lactose/lactitol in both the glass and the melt, providing strong evidence that specific interactions within the mixture lowered the matrix mobility. The lifetimes varied systematically with emission wavelength in both matrixes; analysis of the temperature dependence indicated that the activation energy for non-radiative quenching of the triplet state varied somewhat with emission wavelength. Time-resolved emission spectra collected as a function of delay time following pulsed excitation exhibited significant shifts to higher energy as a function of time. These data support a photophysical model in which erythrosin B molecules are distributed among matrix sites that vary such that blue-emitting sites with slower rates of matrix dipolar relaxation also have slower rates of molecular collisions. The amorphous matrixes of lactose and lactitol in both the glass and the melt state are thus characterized by dynamic site heterogeneity in which different sites vary in terms of their overall molecular mobility.  相似文献   

3.
We have measured ΔA transient absorption spectra in the Soret region and kinetics of photodissociation of oxymyoglobin (MbO2) solutions following excitation by pulses of duration 350 fsec and 10 μJ energy at 307 nm. We observed an instantaneous bleaching of the absorbance at 414 nm and the appearance of a broad, red-shifted absorption band in the 438–470 nm region with a time constant of 250 fsec indicative of the formation of a short-lived deliganded Mb species which relaxes to the stable Mb with a constant of 3.5 psec. Following this early relaxation, changes in absorption kinetics indicate also a geminate recombination process of constant τ = 100 psec. These data demonstrate that the well established low quantum yield (φ = 0.03) of photodissociation in MbO2 is related both to the relaxation of an excited Mb state and to a fast geminate recombination process.  相似文献   

4.
The photo-sensitization synthetic technique of making silver nanoparticles using benzophenone is studied using both a laser and a mercury lamp as light sources. The power and irradiation time dependence of the synthesized nanoparticle absorption spectra and their size distribution [as determined by transmission electron microscopy (TEM)] are studied in each method and compared. In the laser synthesis, as either the laser power or the irradiation time increases, the intensity of the surface plasmon resonance absorption at 400 nm is found to increase linearly first, followed by a reduction of the red edge of the plasmon resonance absorption band. The TEM results showed that in the laser synthesis low powers and short irradiation times produce nanoparticles around 20 nm in diameter. Increasing the power or irradiation time produces a second population of nanoparticles with average size of 5 nm in diameter. These small particles are believed to be formed from the surface ablation of the large particles. The surface plasmon absorption band is found to be narrower when the nanoparticles are produced with laser irradiation. Throughout the exposure time with the CW lamp, the plasmon resonance absorption band of the particles formed first grows in intensity, then blue shifts and narrows, and finally red shifts while decreasing in intensity. The TEM results for lamp samples showed particle formation and growth, followed by small nanoparticle formation. The above results are discussed in terms of a mechanism in which, the excited benzophenone forms the ketal radical, which reduces Ag+ in solution and on the Ag nanoparticle surface. As the time of irradiation or the light energy increases the benzophenone is consumed, which is found to be the limiting reagent. This stops the formation of the normal large nanoparticles while their photo-ablation continues to make the small particles.  相似文献   

5.
The polarized photoacoustic, absorption and fluorescence spectra of chloroplasts and thylakoids in unstretched and stretched polyvinyl alcohol films were measured. The intensity ratios of fluorescence bands at 674 nm, 700 nm, 730 nm and 750 nm, and the polarized fluorescence excitation spectra are strongly dependent on light polarization and film stretching. In stretched films, thylakoids exhibit predominantly 674 nm emission. The ratio of photoacoustic signal to absorption is different for light polarized parallel and perpendicular to film stretching. This difference is large in the region of chlorophyll a and carotenoids absorption in which the fluorescence excitation spectra are also strongly dependent on light polarization and film stretching. The observed spectral changes are explained by reorientation of pigment molecules influencing the yield of excitation transfer between different pigments.  相似文献   

6.
This work demonstrates the use of multiquantum EPR to study the magnetic properties of copper complexes and copper proteins. Pure absorption spectra are obtained because of the absence of field modulation. The signal intensity of 3-quantum spectra is proportional to the spin lattice relaxation time T1, while its linewidth in a frequency difference sweep is T1(-1). A change in lineshape for the EPR detectable mixed value [Cu(1.5) . . . Cu(1.5)] site in nitrous oxide reductase is attributed to suppression of the forbidden transitions. The data confirm the unusually fast relaxation time for this site, which requires temperatures of less than 100 K to resolve hyperfine structure. The T1's for the mixed valence [Cu(1.5) . . . Cu(1.5)] site in nitrous oxide reductase are very similar to T1's for the Cua site in cytochrome c oxidase. The similar relaxation properties, together with previous multifrequency EPR results, support the hypothesis that the EPR detectable sites in cytochrome c oxidase and nitrous oxide reductase are mixed valence [Cu(1.5) . . . Cu(1.5)] configurations.  相似文献   

7.
Chitosan/alginate multilayers were fabricated using a spin‐coating method, and ZnS:Cu nanoparticles were generated within the network of two natural polysaccharides, chitosan and sodium alginate. The synthesized nanoparticles were characterized using an X‐ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results showed that cubic zinc blende‐structured ZnS:Cu nanoparticles with an average crystal size of ~ 3 nm were uniformly distributed. UV–vis spectra indicate a large quantum size effect and the absorption edge for the ZnS:Cu nanoparticles slightly shifted to longer wavelengths with increasing Cu ion concentrations. The photoluminescence of the Cu‐doped ZnS nanoparticles reached a maximum at a 1% doping level. The ZnS:Cu nanoparticles form and are distributed uniformly in the composite multilayer films with a surface average height of 25 nm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced--resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation.  相似文献   

10.
Copper‐doped zinc sulfide (ZnS:Cu) nanoparticles with varying concentrations of capping agent were prepared using a chemical route technique. These particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy and X‐ray diffraction (XRD). Optical absorption studies showed that the absorption edge shifted towards the blue region as the concentration of the capping agent increased. Using effective mass approximation, calculation of the nanoparticle size indicated that effective band gap energy increases with decreasing particle size. The thermoluminescence (TL) properties of sodium hexameta phosphate (SHMP)‐passivated ZnS:Cu nanoparticles were investigated after UV irradiation at room temperature. The TL glow curve of capped ZnS:Cu showed variations in TL peak position and intensity with the change in capping agent concentration. The photoluminescence (PL) spectra of ZnS:Cu nanoparticles excited at 254 nm exhibited a broad green emission band peaking around 510 nm, which confirmed the characteristic feature of Zn2+ as well as Cu2+ ions as the luminescent centres in the lattice. The PL spectra of ZnS:Cu nanoparticles with increasing capping agent concentrations revealed that the emission becomes more intense and shifted towards shorter wavelengths as the sizes of the samples were reduced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex.  相似文献   

13.
Iu V Rubin  S A Egupov 《Biofizika》1987,32(3):378-382
A theoretical and experimental investigation of absorption and luminescence features of crystals and aggregates of nucleic acid bases were carried out. The long wavelength low intensity bands in UV-absorption nd excitation spectra, bathochromic shift of fluorescence spectra, the change of correlation between the intensity of fluorescence and phosphorescence spectra were obtained. The interpretation of these experimental results was proposed on the basis of pair interaction calculations (exciton-resonance and charge-resonance) in different conformations of cytosine dimers. The energy transfer after excitation at lambda 280 and 312 nm was investigated in nucleic acid base aggregates.  相似文献   

14.

The optical response of a new graphene-like material Si2BN’s nanostructures and some kinds of hybrid structures formed by Si2BN and metal nanoparticles was studied by using time-dependent density functional theory (TDDFT). We found that the periodic structures of Si2BN have wider absorption ranges than graphene. When the impulse excitation polarizes in different directions (armchair-edge direction and zigzag-edge direction), the absorption spectra of Si2BN nanostructures would be different (optical anisotropy). And in the hybrid structures, the increase of metal nanoparticles’ number brings the absorption intensity strengthening and red shift, which means a stronger ability of localized surface plasmon tuning. Also, the different metal nanoparticles were used to form the hybrid structures; they show an obviously different property as well. In addition, in the kinds of situations mentioned above, the plasmons were produced in visible region. This investigation provides an improved understanding of the plasmon enhancement effect in graphene-like photoelectric devices.

  相似文献   

15.
CdSe nanoparticles were synthesized by green route and chemical route methods. In the green route method the samples were capped by starch and in the chemical route method the samples were capped by mercaptoacetic acid (MAA). The samples were characterized by powder X‐ ray diffraction (XRD) and transmission electron microscopy (TEM). Both the samples showed zinc blend structure. The optical absorption spectra and Fourier transform infrared (FTIR) spectra were also studied. A blue shift was seen in the absorption spectra as compared with the bulk as well as the sample capped by starch. TEM images showed agglomeration for the starch‐capped sample as compared with the MAA‐capped sample. The particle size for the sample capped by MAA was found to be less as compared with the starch‐capped sample. A blue shift in the photoluminescence (PL) spectra was also recorded for the samples prepared by the chemical route as compared with the sample prepared by the green route as well as the bulk. The PL peak shifted towards the red side and increase in the peak intensity occurred with the change in the excitation wavelength. Change in PL intensity was observed with different pH at 685 nm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The fluorescence spectra of 2-(p-toluidinylnaphthalene)-6-sulfonate associated with β-lactoglobulin, β-casein. and bovine and human serum albumins are shown to depend on excitation wavelength. A long-wave shift of the spectra is observed at the long-wave edge excitation, reaching 10 nm and above. A similar phenomenon is found in glucose glass and in glycerol at + 1°C, i.e., in systems with delayed dipolar solvent relaxation, but not in liquid solutions. This phenomenon is proposed to be based on relaxation processes in the excited state. There exists a distribution of chromophore microstates with different interactions with surrounding groups which results in heterogeneous broadening of the electronic spectra and allows photoselection of a part of this distribution, being characterized by a low transition energy. The fast structural relaxation results in an altered distribution and, if this is the case, the effect of edge excitation of fluorescence spectra is not observed. If the structural relaxation during the excited state lifetime is absent, this effect is maximal. This interpretation is in agreement with results on the influence of red edge excitation on the low-temperature fluorescence spectra of dyes and with the data on time-resolved nanosecond fluorescence spectroscopy. The results of this work strongly support the significant dye fluorescence spectral shifts on protein binding, being determined not only by polarity changes in their environment, but also by relaxation properties of protein groups in this environment. These results also indicate that on the nanosecond time scale, the structural relaxation around the excited chromophore in proteins may be incomplete.  相似文献   

17.
Infrared spectra of as-, beta- and micellar casein were studied at relative water vapor pressures (p/po) ranging from 0 to 0.98. The samples were prepared as self-supporting films by evaporating concentrated aqueous suspensions of the caseins under study. An infrared cell and a vacuum apparatus were constructed which allowed exposure of the casein films either to vacuum or to sorbate vapor. Following the increase in intensities of the OH and O2H absorption bands during hydration, a sigmoid-shaped curve was observed, similar to the type II isotherm usually obtained by gravimetric sorption measurements. The pronounced frequency and intensity changes in the amide I, II and III bands in the p/po range from 0 to about 0.10 lead to the conclusion that water molecules are already attached to the peptide repeat unit at very low humidities. Based on calculations of the amount of polar groups per casein molecule it was shown that much less than one water molecule per polar group is needed to cause these significant spectral changes.  相似文献   

18.
The absorption and circular dichroic (CD) spectra of parsley plastocyanin (PC) were measured in order to determine the effects of changes in primary amino acid sequence on both the copper center and protein components of the PC molecule. The near-ultraviolet (uv) absorption and CD spectra of parsley PC were found to be qualitatively similar to those of spinach, poplar, and lettuce PC, except for the near-uv CD spectrum of the reduced form at low pH (ca. pH 5.0). The CD spectrum of reduced parsley PC in the 250-265 nm wavelength region changes from positive to negative ellipticity upon reduction of pH, and is characterized by a pKa value of 5.7. This pKa value is the same as that for the protonation of the histidine 87 copper ligand, observed by NMR, and the change in conformation of the copper center. Similar processes are believed to occur in the other PC species at lower pH values. Thus, the pH-dependent perturbations of the near-uv CD spectra of reduced PC are interpreted as due to transitions in the reduced copper center. The increase in the near-uv absorption spectrum of reduced PC can be divided into pH-independent and pH-dependent portions. The pH-independent portion resembles the absorption spectrum of tetrahedral Cu(I) metallothionein, suggesting the presence of Cu(I)-Cys 84 and/or Cu(I)-Met 92 charge transfer transitions in the near-uv absorption spectra of reduced PC. The pH dependence of the absorption spectrum changes and the pH difference absorption spectrum indicate that tyrosine residues may contribute to at least a part of the pH-dependent portion of the absorption increase of reduced PC.  相似文献   

19.
Ag nanoparticles (NPs) embedded in a zirconium oxide matrix in the form of Ag:ZrO2 nanocomposite (NC) thin films were synthesized by using the sol–gel technique followed by thermal annealing. With the varying of the concentration of Ag precursor and annealing conditions, average sizes (diameters) of Ag nanoparticles (NPs) in the nanocomposite film have been varied from 7 to 20 nm. UV–VIS absorption studies reveal the surface plasmon resonance (SPR)-induced absorption in the visible region, and the SPR peak intensity increases with the increasing of the Ag precursor as well as with the annealing duration. A red shift in SPR peak position with the increase in the Ag precursor concentration confirms the growth of Ag NPs. Surface topographies of these NC films showed that deposited films are dense, uniform, and intact during the variation in annealing conditions. The magnitude and sign of absorptive nonlinearities were measured near the SPR of the Ag NPs with an open-aperture z-scan technique using a nanosecond-pulsed laser. Saturable optical absorption in NC films was identified having saturation intensities in the order of 1012 W/m2. Such values of saturation intensities with the possibility of size-dependent tuning could enable these NC films to be used in nanophotonic applications.  相似文献   

20.
Photosystem two reaction centers have been studied using a sensitive femtosecond transient absorption spectrometer. Measurements were performed at 295 K using different excitation wavelengths and excitation intensities which are shown to avoid multiphoton absorption by the reaction centers. Analyses of results collected over a range of time scales and probe wavelengths allowed the resolution of two exponential components in addition to those previously reported [Durrant, J. R., Hastings, G., Hong, Q., Barber, J., Porter, G., & Klug, D. R. (1992) Chem. Phys. Lett. 188, 54-60], plus the long-lived radical pair itself. A 21-ps component was observed. The process(es) responsible for this component was (were) found to produce bleaching of a pheophytin ground-state absorption band at 545 nm and the simultaneous appearance of a pheophytin anion absorption band at 460 nm resulting in a transient spectrum which was that of the radical pair P680+Ph-. This component is assigned to the production of reduced pheophytin. A lower limit of 60% of the final pheophytin reduction was found to occur at this rate. Despite subtle differences in transient spectra, the lifetime and yield of this pheophytin reduction are essentially independent of excitation wavelength within the signal to noise limitations of these experiments. A long-lived species was also observed. This species is produced by those processes which result in the 21-ps component, and it has a spectrum which is found to be independent of excitation wavelength. This spectrum is characteristic of the primary radical pair state P680+Ph-. In addition, a 200-ps component was found which is tentatively assigned to a slow energy-transfer/trapping process. This component was absent if P680 was excited directly and is therefore not integral to primary radical pair formation. Overall, it is concluded that the rate of pheophytin reduction is limited to (21 ps)-1, even when P680 is directly excited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号