首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Juefu  Chen  Jiao  Liu  Huan  Liu  Yuanyuan  Zhu  Lu 《Plasmonics (Norwell, Mass.)》2020,15(5):1517-1524

A three-dimensional cross-shaped fractal metamaterial absorber with ultra-wide wavelength band, polarization-independence and wide-angle, is numerically investigated by the finite-difference time-domain method. In this absorber, the solar energy is trapped by the cross-shaped fractal of the upper layer, and the Si-ring filled with iron in the middle layer and the wavelength band can be broadened by the self-similarity of fractal structure. The absorber exhibits absorptivity higher than 91% for the wavelengths from 400 to 2000 nm and an absorption bandwidth of about 133%. Furthermore, the proposed absorber realizes polarization independence, and the maximum incident angle is 76°. However, as the iron material applied in the nano-metamaterial absorber (NMA) can be easily oxidized and rusted, it is replaced by nickel with characteristics such as corrosion resistance and high-temperature resistance; thus, an improved NMA is obtained. The improved absorber not only eliminates the corrosion-prone defects of the above proposed structure but also maintains polarization independence and high absorption and widens the angle of incidence up to 79° and thereby can be applied in many areas, such as solar energy harvesting.

  相似文献   

2.

In this paper, the idea of square fractal geometry has been utilized to introduce a tunable wideband graphene-based perfect plasmonic absorber in the near-infrared region. It consists of a MgF2 layer and an array of gold squares fractal loaded on a graphene layer. In the designed absorber a single layer of graphene has been used instead of multilayered graphene structures. The structure is polarization-insensitive under normal incidence due to the geometric symmetry. The absorption and bandwidth of the structure are almost insensitive to the incident angle up to 15° and 45° for TE and TM polarizations, respectively. Moreover, by choosing appropriate structural parameters, the resonance wavelength of the desired plasmonic absorber can be controlled. The absorption of the introduced structure can be tuned by changing the chemical potential of the graphene. Therefore, the proposed fractal absorber can act as switch and inverter at λ = 1995 nm. Furthermore, the equivalent circuit model of the absorber has been derived to confirm the validity of the simulation results. The superiorities of our fractal absorber are wide full-width at half-maximum of 406 nm, multi-applicant, perfect absorption, and fabrication feasibility due to the simple structure with the maximum absorption tolerance error of 5.12%.

  相似文献   

3.

In this paper, a non-structured graphene sheet loaded with a sinusoidal-patterned dielectric is introduced as an ultra-wideband metamaterial absorber in terahertz regime. Regardless of conventional structures with multilayered-graphene, a single layer sheet of non-structured graphene is used whereas the proposed structure benefits from dielectric width modulation and cavity method in order to excite continuous graphene plasmon resonances. The structure comprises four layers that two Fabry-Perot cavity mirrors are constructed by upper sinusoidal-patterned dielectric and a gold film. Full wave simulation results demonstrate that a broadband over 90% absorption with absolute bandwidth of 6.58 THz and central frequency of 3.97 THz is achieved under normal TE/TM incident plane wave. The designed structure yields 166% relative bandwidth. According to the symmetric configuration, the absorption spectra of mentioned polarizations are thoroughly close to each other resulting to a polarization insensitive structure. The stability of bandwidth and absorbance of the structure versus angle of incidence, θ, up to 35°/65° for TM/TE polarizations, respectively, and azimuth angle, φ, shows an interesting capability for utilization as detectors and sensors. The simple geometry of utilized graphene layer results in easy fabrication. The designed structure has wideband absorption in THz regime. Moreover, it is more compact than conventional broadband THz absorbers.

  相似文献   

4.
A new metamaterial absorber is designed and characterized numerically for the harvesting of solar energy. The design is composed of three layers in which the interaction among them gives rise to the plasmonic resonances. The main operation frequency range of the proposed structure is chosen to be the visible regime. However, the design is also analyzed for the infrared and ultraviolet regimes. In order to characterize the absorber, some parametric studies with respect to the dimensions of the structure are carried out. According to the results, it is found that the proposed metamaterial absorber has 98.2 % absorption capability at 445.85 THz and 99.4 % absorption capability between 624 and 658.3 THz. Moreover, the polarization dependency of the structure is examined and it is found that the design operates well as a perfect absorber with polarization independency for the studied frequency range. As a result, the proposed metamaterial absorber can be used for solar energy harvesting as it provides multiple perfect absorption bands in the visible regime.  相似文献   

5.
A broadband and ultra-thin absorber in the infrared region is proposed. The structure is composed of three layers, and the most remarkable difference is that two hybrid materials (Sn and InSb) are used in the top layer. The numerical results show that a broadband perfect absorption from 85.2 to 114.3 THz can be achieved for either transverse electric or magnetic polarization waves due to the effect of using hybrid materials. Moreover, the power loss and surface current distribution in the absorber are investigated to explain the physical mechanism of high absorption. The metamaterial absorber is ultra-thin, having total thickness of 0.3 μm, i.e.,λ/10 with respect to the center frequency of the high absorption bands. The proposed hybrid materials which are used in the same layer provides a useful way to realize a broadband perfect absorber in the infrared region and it is important for a variety of applications, such as solar energy harvest, sensors, and integrated photodetectors .  相似文献   

6.

In this article, a terahertz absorber tuned by temperature field with a newfangled structure is presented, which comprises the mercury resonators. In this scheme, temperature (T) build-up will lead the mercury stored in the bottom slot to expand through the columniform hole and be full of the upper central cross container, which can transform the absorption bands of such an absorber. The simulated results manifest that when T is increased from 0 to 25 °C, the dual-frequency absorption points (2.59 THz, 3.03 THz) and a narrow absorption region over 90% (6.54–7.10 THz), whose relative bandwidth (RB) is 7.9%, will be tailored to a single-frequency point absorption (3.12 THz) and a broadband absorption area (6.00–7.21 THz, and RB = 18.3%). For figuring out the property of the absorber mentioned above, the impacts of incident and polarization angles along with some relevant parameters of the structure on the absorption property are investigated. In addition, for plainly expounding the physical mechanism of absorption, the distributions of the surface current diagrams of the presented absorber are calculated, as well as the electric field diagrams, the magnetic field diagrams, the power loss density diagrams, and the power flow density diagrams. The proffered scheme in this article may offer a novel idea for realizing the reconfigurable absorbers.

  相似文献   

7.
Recently, metamaterial absorbers have received tremendous amount of interest because of their remarkable ability to manipulate the amplitude, phase, and polarization of light. However, most absorbers rely on the direct coupling of electric or magnetic field with external excitation, which lead to inevitable energy leakage to the surrounding environment and depress the quality factor of the structure. In this work, we investigate the multiband absorption property by exciting dark plasmonic modes in reflective symmetric and asymmetric metamaterials. Theoretically, the existence of dark plasmonic modes in asymmetric metamaterials is unambiguously illustrated by the improved eigen-mode theory. With the introduction of asymmetry, dark modes in metamaterials can be easily excited by normal incident plane wave. Moreover, we also directly excite the dark modes in symmetric absorber with oblique incidence. The dark modes splitting mechanism is also clarified with the excitation of designer surface plasmon. Dominated by magnetic dipole or higher-order multipole, these dark modes possess high quality factors (Q). Numerical results indicate that the metamaterial absorber maintains high absorbance within a wide-angle incidence (0~50°). The high Q asymmetric metamaterial absorber can be an excellent candidate for multiband plasmonic sensor.  相似文献   

8.
We present a broadband plasmonic metamaterial absorber in the infrared region based on localized surface plasmon polaritons (LSPPs). The unit cell of the proposed metamaterial absorber consists of a multi-cavity structure, in which absorption resonances can be tuned independently through the modification of the width and shift of metallic walls. In order to avoid the degeneration between two contiguous resonances, which dramatically reduces the bandwidth, we introduce a zigzag design rule to arrange the cavities within a compact unit. Thus, the possible number of resonances is greatly increased, enabling an ultrabroadband absorption. A broadband absorber is demonstrated with only a few-layer structure and it also has an incident-angle-insensitive feature. Our results have potential applications in photovoltaic devices, emitters, sensors, and camouflage systems.  相似文献   

9.
In this paper, we propose a metamaterial based ultra broadband nano-absorber (UBNA) for solar energy harvesting, whose elements consist of a ring column and dual hexagon pillar at the center. In this absorber, the light of shorter wavelengths is harvested at ring column, while the light of longer wavelengths is trapped by dual hexagon pillar. It is found that the average absorptivity of the UBNA is as high as 96% in 300–1300 nm waveband and the UBNA can maintain 95% in the whole visible and near-infrared waveband ranging from 300 to 2000 nm. In addition, the perfect light absorbing capability of the UBNA is independent of the incident light polarization state in the waveband of 300–1300 nm, and it can keep up an average absorptivity of 91% with an large incident angle varying between ?60° and 60°. We attribute the perfect absorbing property of UBNA to the synergistic effect of the slow wave effect, Fabry-Perot resonance and the localized surface plasmon resonance enhancement.  相似文献   

10.

A dielectric metamaterial absorber has been proposed, which consists of fractal-like structure and conductive sheet. The fractal-like structure is made by the high permittivity dielectric and also is covered by the conductive sheet. Absorptivity of such a dielectric metamaterial absorber is 99.1%, which can be found at 10.196 GHz; meanwhile, the absorber is polarization insensitive. To enhance the bandwidth of absorber, a novel absorber also is proposed, whose bandwidth is 0.566 GHz, which ranges from 9.752 to 10.318 GHz, and relative bandwidth is 5.64%. The maximum absorptivity can reach to 99.8%, and the proposed absorber also is polarization insensitive. In the meantime, the absorber shows excellent performance which is incident angle insensitive; when the incident angle is increased to 70°, the absorptivity is larger than 75%.

  相似文献   

11.

This paper presents a simple multi-band metamaterial absorber for terahertz applications. The unit cell of the proposed structure consists of a single square ring having gaps at the centers on three of its sides. The proposed absorber produces three absorption bands for all polarizations and hence the design can be considered as insensitive to polarization variation. It provides an average absorption of 96.92% for the TE polarization with a peak absorption of 99.44% at 3.87 THz and for the TM polarization, it provides an average absorption of 98.4% with a peak absorption of 99.86% at 3.87 THz. An additional absorption peak is observed for the TE polarization at 1.055 THz that gradually diminishes with the increase in polarization angle and completely vanishes for the TM polarization. Thus, the structure displays a hybrid polarization response with polarization insensitivity in three bands and polarization sensitivity in one band. Parametric analysis has been carried out validating the optimal selection of the design parameters. The simplicity of the design and its combined polarization sensitive and polarization insensitive absorption characteristics can find tremendous applications in the field of terahertz imaging and sensing.

  相似文献   

12.
Plasmonic nanoparticles with outstanding photothermal conversion efficiency are promising for solar vaporization. However, the high cost and the required intense light excitation of noble metals, hinder their practical application. Herein, an inexpensive 3D plasmonic solar absorber gel that embraces all the desirable optical, thermal, and wetting properties for efficient solar vaporization is reported. The broadband absorption and strong near‐field intertip enhancement of the sparsely dispersed gold nanoflowers contribute to efficient light‐to‐heat conversion, while the macro‐nano thermal insulative silica gel retains and channels the plasmonic heat directly to the water pathways contained within the porous gel. The plasmonic‐based solar absorber gel shows a vaporization efficiency of 85% under solar irradiation of 1 sun intensity (1 kW m?2). Moreover, the porous gel framework exhibits high mechanical stability and antifouling properties, potentially useful for polluted/turbid water evaporation. Complementary water condensation‐induced triboelectricity can be harvested alongside fresh water condensate, granting simultaneous fresh water production and electricity generation functionalities. The facile sol‐gel synthesis at room temperature makes the solar absorber gel highly adaptable for practical large‐scale photothermal applications.  相似文献   

13.
Glancing angle deposition is a powerful method for direct fabrication of nanostructures on various substrates. In this research, GLAD method has been used to fabricate Ag nanostructures with columnar morphology for refractive index sensing applications. The morphology and plasmonic properties of the nanostructures are controlled by changing deposition parameters such as glancing angle, speed of azimuthal rotation of the substrate, and the height of deposited nanostructures. The results show that increasing the deposition thickness from 200 to 500 nm leads to narrowing the plasmonic peak, which mainly relates to increment of the distance between larger nanostructures. By changing the glancing angle between 86° to 80°, the narrowest plasmonic peak corresponding to the greatest sensitivity has been obtained for the film deposited at the angle of 82°. Also, increment of the rotation speed of the samples leads to narrowing of the plasmonic peaks. By measuring the refractive index sensitivity (RIS) of the nanostructures, a best sensitivity of 154 nm/RIU has been obtained. Finally, we investigated the stability of Ag nanostructures in deionized water by introducing a new stabilizing technique in which a thin Au layer is coated on the Ag nanostructures. This technique has the merits of simultaneously protecting the Ag nanostructures against oxidation and keeping their refractive index sensitivity high enough for long time usages.  相似文献   

14.
A new strategy for realizing ultra-narrowband plasmonic absorber has been theoretically demonstrated. Dual-band perfect light absorber with the bandwidth down to single digit level and the maximal absorption exceeding 99.2 % is achieved. Moreover, novel absorber-based sensor platform with high-quality factors (S?>?420 nm/RIU, FOM?>?84, and FOM*?>?5600) are obtained. These features hold the proposed absorber to be a feasible candidate for applications in the sensing detection and notch filtering.  相似文献   

15.

We present a multi-band terahertz absorber formed by periodic square metallic ribbon with T-shaped gap and a metallic ground plane separated by a dielectric layer. It is demonstrated that absorption spectra of the proposed structure consist of four absorption peaks located at 1.12, 2.49, 3.45, and 3.91 THz with high absorption coefficients of 98.0, 98.9, 98.7, and 99.6%, respectively. It is demonstrated that the proposed absorber has the tunability from single-band to broadband by changing the length of square metallic ribbon and we can also select or tune the frequencies which we want to use by changing polarization angles. Importantly, the quality factor Q at 3.91 THz is 30.1, which is 5.6 times higher than that of 1.12 THz. These results indicate that the proposed absorber has a promising potential for devices, such as detection, sensing, and imaging.

  相似文献   

16.
Excitation of surface plasmons in metallic nanoparticles is a promising method for increasing the light absorption in solar cells and hence the cell photocurrent. Comprehensive optimization of a nanoparticle fabrication process for enhanced performance of polycrystalline silicon thin-film solar cells is presented. Three factors were studied: the Ag precursor film thickness, annealing temperature and time. The thickness of the precursor film was 10, 14 and 20 nm; annealing temperature was 190, 200, 230 and 260 °C; and annealing time was varied between 20 and 95 min. Performance enhancement due to light-scattering by nanoparticles was calculated by comparing absorption, short-circuit current density and energy conversion efficiency in solar cells with and without nanoparticles formed under different process conditions. Nanoparticles formed from 14-nm-thick Ag precursor film annealed at 230 °C for 53 min result in the highest absorption enhancement in the 700–1,100 nm wavelength range, in the highest enhancement of total short-circuit current density. The highest photocurrent enhancement was 33.5 %, which was achieved by the cell with the highest absorption enhancement in the 700–1,100 nm range. The plasmonic cell efficiency of 5.32 % was achieved without a back reflector and 5.95 % with the back reflector; which is the highest reported efficiency for plasmonic thin-film solar cells.  相似文献   

17.

The need for an easy to fabricate perfect and narrowband light absorber in the visible range of electromagnetic (EM) spectrum has always been in demand for many scientific and device applications. Here, we propose a metal-dielectric-metal (MDM) 1-D grating plasmonic structure as a perfect narrow band light absorber in the visible and its application in glucose detection. The proposed structure consists of a 1- D grating of gold on the top of a dielectric layer on a gold film. Optimization for dielectric grating index (n), grating thickness (t), grating width (W), and grating period (P) has been done to improve the performance of plasmonic structure by calculating its quality factor and figure-of-merit (FOM). The optimized plasmonic structure behaves as a perfect narrowband light absorber. The flexibility to work at a specific wavelength is also offered by the proposed structure through an appropriate selection of the geometrical parameters and refractive index of the dielectric grating. The equivalent RC model is used to understand different components of the proposed structure on the optical response. The absorption response of the structure is invariant to the incident angle. Moreover, the calculated absorbance of the proposed plasmonic structure is ~ 100% with a narrow full-width half maxima (FWHM) of ~ 2.8 nm. We have numerically demonstrated a potential application of the proposed MDM absorber as a plasmonic glucose sensor in the visible range with detection sensitivity in the range of 140 to 195 nm/RIU.

  相似文献   

18.
Da  Yun  Xie  Meiqiu 《Plasmonics (Norwell, Mass.)》2021,16(2):589-597

Nanostructured surface, a promising photon management strategy, enables to enhance photon-to-heat conversion efficiency by manipulating spectral radiative properties ranging from solar spectrum (0.3–2.5 μm) to mid-infrared spectrum (2.5–20 μm). Here, a core–shell nanocone structured surface made of silica core and tungsten shell as a solar selective absorber is introduced. The photothermal conversion efficiency (PTCE) is calculated in consideration of solar spectrum absorption and mid-infrared emission. It is obvious that high solar spectrum absorption and low mid-infrared emission are beneficial for high PTCE. The influence of structural parameters on the PTCE is studied, and then the absorption enhancement mechanism is elucidated in detail. Meanwhile, the influences of incident angle, polarized state, and lattice arrangement are also presented. The calculated results exhibit that our optimized solar absorber possesses the total solar absorption of 97.3% and total thermal emission of 7.6%, resulting in a maximum PTCE of 91.4% under one sun illumination conditions at normal incidence. Moreover, our solar selective absorber is independent to the incident angle and polarization state. The excellent photothermal conversion performance with wide-angle and polarization-insensitive properties for the solar selective absorber can serve as a good candidate for various solar thermal applications including seawater desalination, steam generation, thermophotovoltaic, and photocatalysis.

  相似文献   

19.
Light management holds great promise of realizing high‐performance perovskite solar cells by improving the sunlight absorption with lower recombination current and thus higher power conversion efficiency (PCE). Here, a convenient and scalable light trapping scheme is demonstrated by incorporating bioinspired moth‐eye nanostructures into the metal back electrode via soft imprinting technique to enhance the light harvesting in organic–inorganic lead halide perovskite solar cells. Compared to the flat reference cell with a methylammonium lead halide perovskite (CH3NH3PbI3?x Clx ) absorber, 14.3% of short‐circuit current improvement is achieved for the patterned devices with moth‐eye nanostructures, yielding an increased PCE up to 16.31% without sacrificing the open‐circuit voltage and fill factor. The experimental and theoretical characterizations verify that the cell performance enhancement is mainly ascribed by the broadband polarization‐insensitive light scattering and surface plasmonic effects due to the patterned metal back electrode. It is noteworthy that this light trapping strategy is fully compatible with solution‐processed perovskite solar cells and opens up many opportunities toward the future photovoltaic applications.  相似文献   

20.
The polarization properties of the local electric field in the gold–dielectric–gold multilayer nanoshells are investigated by theoretical calculation based on the quasi-static approximation. The calculation results show that the complete polarized incident light does not only stimulate the same directional polarized local electric field. The polarized angle of the local field may changes from 0° to 90° as the wavelength and location are changed. The distributions of local field polarization are different in dielectric layer or gold shell and display different features in different plasmonic hybridization mode. As the incident wavelength is increased, the hot spot of polarizing angle moves monotonously in the middle dielectric shell, whereas moves nonmonotonously in the gold shell and surrounding environment. In the gold shell, the gap between hot spots of polarizing angle may occur at the resonance frequency. However, the hot spots of polarizing angle always occur at the resonance frequencies in the surrounding environment. These interesting results show that the single-molecule detection based on metal nanostructure induced surface-enhanced Raman scattering and surface enhanced fluorescence could be optimized by adjusting the incident light polarization and frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号