首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmonics - In this study, the second harmonic generation in metal-insulator-metal (MIM) plasmonic waveguides was investigated for both symmetric and asymmetric structures. Nonlinear processes...  相似文献   

2.
Zhao  Shu-min  Zhu  Jian 《Plasmonics (Norwell, Mass.)》2017,12(4):1153-1159

The tunable second harmonic generation (SHG) enhancement factor of gold-dielectric-gold three-layered nanoshells has been theoretically studied using the theory of quasi-static electrodynamics and plasmon hybridization. Because of the local surface plasmon resonance (LSPR)-induced local field effect, the SHG response corresponding to both fundamental frequency and second harmonic has been greatly enhanced. By changing the geometry parameters and local dielectric environment of the three-layered nanostructure, the intensity and shift of the SHG factor peaks could be fine tuned. As the radius of the inner gold sphere is increased, both the fundamental and the second harmonic SHG peaks from the anti-symmetric coupling between the outer bonding shell plasmon and the inner sphere plasmon decrease, whereas the SHG peaks from the symmetric coupling between the outer shell and the inner sphere get intense. These radius-dependent intensity changes of the SHG peaks also depend on the dielectric constant of the separate layer and outer surrounding. Thus, the number of SHG peak could be tuned from two to four. Furthermore, the wavelength gaps between the SHG peaks corresponding to anti-symmetric and symmetric coupling could be greatly reduced by increasing the thickness of the outer gold shell. Therefore, the nonmonotonous intensity change could be observed because of the switching of the SHG peaks. The corresponding physical origin has been illuminated by analyzing the plasmon hybridization and the polarization fields in the nanostructure.

  相似文献   

3.
A subwavelength plasmonic comb-like filter is proposed by using dual symmetric slot cavities which are placed between two parallel metal–insulator–metal (MIM) structure waveguides. The structure can be considered as a resonance loop which consists of slot cavity resonators and MIM waveguide resonators. The reflective wavelength range and channel spacing are determined by the lengths of slot cavities and MIM waveguides, respectively. Three, four, and five reflective channels with high reflection are achieved in a small wavelength range. Higher channel count can be available by increasing the length or the real part of effective index of MIM waveguides. Such a device can find applications in various optical systems such as wavelength demultiplexing components.  相似文献   

4.
We propose an internal asymmetric plasmonic slot waveguide (IAPSW) containing two different materials in the slot region for third harmonic generation (THG) from 2.25 μm. In the IAPSW, the required phase matching condition is satisfied between the 0th-order mode at the fundamental frequency and 1st-order mode at the third harmonic frequency. By choosing an appropriate slot geometry and materials, the third harmonic electric field distribution can be engineered to significantly enhance the nonlinear overlap coefficient for THG. According to our simulation, a conversion efficiency up to 0.67 % with 1 W pump power is predicted within a ~10 μm IAPSW. Additionally, the waveguide shows large fabrication tolerance in terms of geometry parameters. The proposed waveguide can find potential applications for high-speed all-optical signal processing.  相似文献   

5.

The surface plasmon resonance (SPR)-induced local field effect in Al-Au-Ag trimetallic three-layered nanoshells has been studied theoretically. Because of having three kinds of metal, three plasmonic bands have been observed in the absorption spectra and the local electric field factor spectra. The local electric field enhancement and the corresponding resonance wavelength for different plasmon coupling modes and spatial positions of the Al-Au-Ag nanoshells with various geometry dimensions are investigated to find the maximum local electric field enhancement. The calculation results indicate that the giant local electric field enhancement could be stimulated by the plasmon coupling in the middle Au shell or the outer Ag shell and could be optimized by increasing the Ag shell thickness and decreasing the Au shell thickness. What is more, the local electric field enhancement also nonmonotonously depends on the dielectric constant of the environment; the local electric field intensity will be weakened when the surrounding dielectric constant is too small or too large.

  相似文献   

6.
A plasmonic coupling structure composed of Ag nanocap–nanohole pairs was fabricated through a novel and facile method. Both surface-enhanced Raman scattering (SERS) measurements and numerical simulations show that the cap-hole system produces much larger electric field enhancement and SERS signal than the isolated structures, which is due to the plasmonic coupling effect between the gap of the cap and the hole. Additionally, the plasmonic enhancement is sensitive to the gap size, which can be controlled by the Ag layer thickness during the evaporation process. A maximum enhancement factor of 1.1×108 can be obtained with optimized gap size.  相似文献   

7.
Coupling of incident light through an air region into an S-shape silver (Ag) plasmonic nanowire waveguide (SSAPNW) is a highly difficult challenge of light guiding on the surface of metal nanowire. In this paper, we numerically analyze the coupling effect of an SSAPNW which is covered by a dielectric medium using a finite element method. The coupling effect can be modulated by adjusting the Ag nanowire diameter and the covering dielectric medium width and wavelength of incident light, and the propagation length of surface plasmon (SP) coupling can be maximized. Simulation results reveal that the field confinement can be significantly improved and the majority of the electric field can be carried on the surface of a bending Ag nanowire. The effect of electric field transport along an SSAPNW due to SP coupling and Fabry-Perot resonance is investigated for different dimensions and lengths. Accordingly, long propagation lengths of about 41.5 μm for 10?×?SSAPNW at an incident wavelength of 810 nm and longer propagation length can be achieved if more sections of an SSAPNW are used. Simulation results offer an efficient method for optimizing SP coupling into bending metal nanowire waveguides and promote the realization of highly integrated plasmonic devices.  相似文献   

8.
Fano resonances are numerically predicted in an ultracompact plasmonic structure, comprising a metal-isolator-metal (MIM) waveguide side-coupled with two identical stub resonators. This phenomenon can be well explained by the analytic model and the relative phase analysis based on the scattering matrix theory. In sensing applications, the sensitivity of the proposed structure is about 1.1?×?103 nm/RIU and its figure of merit is as high as 2?×?105 at λ?=?980 nm, which is due to the sharp asymmetric Fano line-shape with an ultra-low transmittance at this wavelength. This plasmonic structure with such high figure of merits and footprints of only about 0.2 μm2 may find important applications in the on-chip nano-sensors.  相似文献   

9.
We demonstrate significantly longer plasmon lifetime and stronger electric field enhancement by lifting the nanoantenna arrays above the substrate by dielectric nanopillars. The role of the pillar is to offer a more homogeneous dielectric background allowing stronger diffraction coupling among plasmonic nanoantennas leading to a Fanolike asymmetric lineshape. It is found that the electric fields around the nanoantennas can be greatly enhanced when the Fanolike resonance is excited, and a 4.2 times enhancement is achieved compared with the pure resonance in individual nanoantennas. Furthermore, only a collective surface mode with its electric fields of the same direction as the induced electric moment in the nanoantennas could mediate the excitation of such a Fanolike resonance. More importantly, the sensitivity and the figure of merit (FOM) of this plasmonic structure can reach as high as 900 nm/RIU and 53, respectively. Our study offers a new, simple, and efficient way to design the plasmonic systems with desired electric field enhancement and spectral lineshape for different applications.  相似文献   

10.
We present detailed experimental and numerical studies of plasmonic properties of gold nanoring (NR) arrays with different slab thicknesses from 15 to 125 nm. The hybrid plasmon resonances for the bonding and antibonding modes in gold NRs exhibit a high slab thickness dependence behavior in optical properties. For the thinner slab thickness below 50 nm, both hybrid modes show large spectral tunabilities by varying the slab thickness. Furthermore, for such hollow NR structure, the enhancements of electric field intensities at the inner and outer ring surfaces when reducing the slab thickness are investigated. We observe a significant transition of field distributions for the antibonding mode. All these features can be understood by surface charge distributions from our simulations. The results of this study offer a potential strategy to design a composite plasmonic nanostructure with large field enhancement for numerous applications.  相似文献   

11.
We propose an ultrasmall plasmonic cavity based on the channel waveguides for chemical sensing. The plasmonic mode gap due to cutoff angular frequency enables strong optical confinement in a subwavelength volume and suppression of radiation loss. Due to strong field overlap of the surface plasmon polariton mode with environmental material, large sensitivity (1,100 nm/refractive index unit) and a high figure of merit (330) are achieved in the plasmonic cavity with a small physical size of 600?×?800?×?2,500 nm having a telecommunication resonant wavelength. This plasmonic cavity can introduce a broad range of applications including biochemical sensing and strong light–matter interactions.  相似文献   

12.
A high sensitive plasmonic refractive index sensor based on metal-insulator-metal (MIM) waveguides with embedding metallic nano-rods in racetrack resonator has been proposed. The refractive index changes of the dielectric material inside the resonator together with temperature changes can be acquired from the detection of the resonance wavelength, based on their linear relationship. With optimum design and considering a tradeoff among detected power, structure size, and sensitivity, the finite difference time domain simulations show that the refractive index and temperature sensitivity values can be obtained as high as 2610 nm per refractive index unit (RIU) and 1.03 nm/°C, respectively. In addition, resonance wavelengths of resonator are obtained experimentally by using the resonant conditions. The effects of nano-rods radius and refractive index of racetrack resonator are studied on the sensing spectra, as well. The proposed structure with such high sensitivity will be useful in optical communications that can provide a new possibility for designing compact and high-performance plasmonic devices.  相似文献   

13.
The generation efficiency of surface plasmon polaritons at metallic nanoslit is theoretically analyzed, and a novel plasmonic lens with two semiannular nanoslits is proposed in this paper. Based on the analysis results, the focusing performance of the proposal is optimized with a maximum field intensity enhancement factor of 7.69 and the full width at half maximum is 132 nm (~0.2λ i), far beyond theoretical diffraction limit. Meanwhile, some other classical plasmonic lenses are also optimized through improving generation efficiency of surface plasmon polaritons at nanoslit and the focusing performances are consequently greatly enhanced.  相似文献   

14.
An Integrated Multistage Nanofocusing System   总被引:1,自引:0,他引:1  
We demonstrate an integrated multistage nanofocusing system which combines a conventional objective, a surface plasmonic lens, and a center-positioned rounded-tip cone nanoparticle. The surface plasmonic lens, fabricated on the cover glass which has been mounted on the biological microscopic objective, is composed of several concentric annular slits for exciting propagating surface plasmonic wave. The rounded-tip cone nanoparticle is for further generating non-propagating localized surface plasmonic wave. It is revealed that the enhancement of the nanoscale optical field can be improved by carefully choosing the appropriate numerical aperture of the objective to match the specific nanostructure of the surface plasmonic lens and choosing the relatively big cone angle of the nanoparticle. The investigation shows that a highly confined electric field as small as 20 nm and an enhancement factor of 5 orders of magnitude can be achieved through this multistage nanofocusing system when the system is illuminated with a uniform radially polarized beam.  相似文献   

15.
Excitation of surface plasmons in metallic nanoparticles is a promising method for increasing the light absorption in solar cells and hence the cell photocurrent. Comprehensive optimization of a nanoparticle fabrication process for enhanced performance of polycrystalline silicon thin-film solar cells is presented. Three factors were studied: the Ag precursor film thickness, annealing temperature and time. The thickness of the precursor film was 10, 14 and 20 nm; annealing temperature was 190, 200, 230 and 260 °C; and annealing time was varied between 20 and 95 min. Performance enhancement due to light-scattering by nanoparticles was calculated by comparing absorption, short-circuit current density and energy conversion efficiency in solar cells with and without nanoparticles formed under different process conditions. Nanoparticles formed from 14-nm-thick Ag precursor film annealed at 230 °C for 53 min result in the highest absorption enhancement in the 700–1,100 nm wavelength range, in the highest enhancement of total short-circuit current density. The highest photocurrent enhancement was 33.5 %, which was achieved by the cell with the highest absorption enhancement in the 700–1,100 nm range. The plasmonic cell efficiency of 5.32 % was achieved without a back reflector and 5.95 % with the back reflector; which is the highest reported efficiency for plasmonic thin-film solar cells.  相似文献   

16.
We demonstrate the synthesis and characterization of core–shell nanowires consisting of a non-centrosymmetric KNbO3 core and a gold shell. This type of nanostructure combines the nonlinear optical properties of the core and the plasmonic resonance of the shell in the near infrared spectral range. We report successful spectroscopic measurements on coated single wires to characterize the resonant behavior of the gold shell. We present a theoretical model based on the electrostatic approximation to estimate the enhancement of second-harmonic generation in a nanowire due to the shell. It suggests a possible enhancement factor of up to 4,000 for a system with a nanoshell of 16 nm thickness at a wavelength of 900 nm.  相似文献   

17.
In this paper, a rough silver core-shell nanoparticle with strong electric field enhancement in the vicinity of a bumpy structure on the silver core-shell surface is reported. A dipolar plasmonic mode of the silver nanoshell is investigated by using the quasi-static approach and plasmon hybridization theory, which analytical results identify the electric field enhancement spectra in which the enhancement is optimized. As the silver shell thickness is small, the hot spots play an important role in the plasmonic field enhancement. In addition, the deposition of a rough silver shell can generate a stronger near-field enhancement near the silver surface which is more desirable than that of a smooth silver shell for sensitive detection based on SPR and surface enhanced Raman scattering (SERS). The plasmonic field enhancement of a bumpy silver core-shell nanoparticle permits the detection and characterization of bovine serum albumin (BSA) protein molecule and hemoglobin solution with a high sensitivity.  相似文献   

18.
This paper proposes a compact plasmonic structure that is composed of a metal-insulator-metal (MIM) waveguide coupled with a groove and stub resonators, and then investigates it by utilizing the finite element method (FEM). Simulation results show that the interaction between the local discrete state caused by the stub resonator and the continuous spectrum caused by the groove resonator gives rise to one of the two Fano resonances, while the generation of the other resonance relies only on the groove. Meanwhile, the asymmetrical linear shape and the resonant wavelength can be easily tuned by changing the parameters of the structure. By adding stubs on the groove, we excited multiple Fano resonances. The proposed structure can serve as an excellent plasmonic sensor with a sensitivity of 2000 nm/RIU and a figure of merit of about 3.04?×?103, which can find extensive applications for nanosensors.  相似文献   

19.
The nonlinear optical properties of single gold nanorods (GNRs) with a large diameter of ~200 nm and a long length of ~800 nm were investigated by using a focused femtosecond (fs) laser light with tunable wavelength. While the linear and nonlinear optical properties of small-sized GNRs have been extensively studied, the nonlinear optical properties of large-sized GNRs and the effects of high-order surface plasmon resonances remain unexplored. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed in the nonlinear response spectra, and their dependences on excitation wavelength and polarization were examined. The scattering and absorption spectra of the small- and large-sized GNRs were compared by using the discrete dipole approximation method. It was found that the extinction of large-sized GNRs is dominated by scattering rather than absorption, which is dominant in small-sized GNRs. In addition, it was revealed that the excitation wavelength-dependent SHG of a GNR is governed by the linear scattering of the GNR and the maximum SHG is achieved at the valley of the scattering spectrum. In comparison, the excitation wavelength dependence of TPL is determined by the absorption spectrum of the GNR. The polarization-dependent SHG of a GNR exhibits a strong dependence on the dimension of the GNR, and it may appear as bipolar distributions parallel or perpendicular to the long axis of the GNR or multipole distributions.  相似文献   

20.
Light extraction from silicon (SiV) and nitrogen (NV) vacancy diamond color centers coupled to plasmonic silver and gold nanorod dimers was numerically improved. Numerical optimization of the coupled dipolar emitter—plasmonic nanorod dimer configurations was realized to attain the highest possible fluorescence enhancement by simultaneously improving the color centers excitation and emission through antenna resonances. Conditional optimization was performed by setting a criterion regarding the minimum quantum efficiency of the coupled system (cQE) to minimize losses. By comparing restricted symmetric and allowed asymmetric dimers, the advantages of larger degrees of freedom achievable in asymmetric configurations was proven. The highest 2.59?×?108 fluorescence enhancement was achieved with 46.08% cQE via NV color center coupled to an asymmetric silver dimer. This is 3.17-times larger than the 8.19?×?107 enhancement in corresponding symmetric silver dimer configuration, which has larger 68.52% cQE. Among coupled SiV color centers the highest 1.04?×?108 fluorescence enhancement was achieved via asymmetric silver dimer with 37.83% cQE. This is 1.06-times larger than the 9.83?×?107 enhancement in corresponding symmetric silver dimer configuration, which has larger 57.46% cQE. Among gold nanorod coupled configurations the highest fluorescence enhancement of 4.75?×?104 was shown for SiV color center coupled to an asymmetric dimer with 21.8% cQE. The attained enhancement is 8.48- (92.42-) times larger than the 5.6?×?103 (5.14?×?102) fluorescence enhancement achievable via symmetric (asymmetric) gold nanorod dimer coupled to SiV (NV) color center, which is accompanied by 16.01% (7.66%) cQE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号