首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly developed nitrogen laser fluorimeter insensitive to actinic illumination was used to follow simultaneously the light induced changes in red and blue fluorescence of intact isolated spinach chloroplasts and leaf pieces. The recorded variable blue fluorescence was linked to a water soluble component of intact isolated chloroplasts, depended on Photosystem I, and was related to changes in carbon metabolism. From the comparison of changes in intact and broken chloroplasts and from fluorescence spectra under different conditions, it was concluded that the variation in NADPH was the major cause for the changes in blue fluorescence. This study opens a path towards continuous and non-destructive monitoring of NADPH redox state in chloroplasts and leaves.Abbreviations Chl chlorophyll - DHAP dihydroxyacetone phosphate - DLGA DL-glyceraldehyde - FNR ferredoxin-NADP reductase - FWHM full width at half maximum - LED light emitting diodes - OAA oxaloacetate - qN non-photochemical quenching - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - qP photochemical quenching - PPFD photosynthetic photon flux density - QA primary quinone acceptor of Photosystem II Preliminary results of this work were presented at the First Conference on the Physiology and Biochemistry of high Mountain Plants, 2–3 July 1992, Villar d'Arene, France.  相似文献   

2.
3.
We devised recently a method to trap intact isolated chloroplasts on a solid support consisting of membrane filters made of cellulose nitrate (Cerovi et al., 1987, Plant Physiol. 84, 1249–1251). The addition of alkaline phosphatase to the reaction medium enabled continuous photosynthesis by spinach (Spinacia oleracea L.) chloroplasts to be sustained by hydrolysis of newly produced and exported triose phosphates and recycling of orthophosphate. In this system, simultaneous measurements of chlorophyll fluorescence and oxygen evolution were performed and their dependence on orthophosphate concentration was investigated. Optimal photosynthesis was obtained at a much higher initial orthophosphate concentration (2–4 mM) compared to intact chloroplasts in suspension. Secondary kinetics of chlorophyll fluorescence yield were observed and were shown to depend on the initial orthophosphate concentration.Abbreviations Chl chlorophyll - CSS intact isolated chloroplasts on solid support - ICS intact isolated chloroplasts in suspension - Pi orthophosphate - v rate of O2 evolution - PPFD photosynthetic photon flux density The authors wish to thank Dr. Marijana Plesniar, from the University of Novi Sad, for stimulating discussions. This work was supported by the Fond for Science of the Republic of Serbia. Z.G.C.'s visit to the Robert Hill Laboratory was supported by the British Council and the University of Sheffield.  相似文献   

4.
Henrik Laasch 《Planta》1987,171(2):220-226
Non-photochemical quenching of chlorophyll a fluorescence after short-time light, heat and osmotic stress was investigated with intact chloroplasts from Spinacia oleracea L. The proportions of non-photochemical fluorescence quenching (q N ) which are related (q E ) and unrelated (q I ) to the transthylakoid proton gradient (pH) were determined. Light stress resulted in an increasing contribution of q Ito total q N.The linear dependence of q. Eand pH, as seen in controls, was maintained. The mechanisms underlying this type of quenching are obviously unaffected by photoin-hibition. In constrast, q Ewas severely affected by heat and osmotic stress. In low light, the response of q Eto changes in pH was enhanced, whereas it was reduced in high light. The data are discussed with reference to the hypothesis that q Eis related to thermal dissipation of excitation energy from photosystem II. It is shown that q Eis not only controlled by pH, but also by external factors.Abbreviations and symbols 9-AA 9-aminoacridine - F o basic chlorophyll fluorescence - F o variable chlorophyll fluorescence - L 2 saturating light pulse - PS photosystem - q E pH-dependent, non-photochemical quenching of fluorescence - q I pH-independent, non-photochemical quenching - q N entire non-photochemical quenching - q Q photochemical quenching  相似文献   

5.
In order to examine the transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves, a micro-fluorescence imaging system was devised using a microscope, a CCD camera with an image intensifier, an Ar and a He-Ne laser light source, an image processor, and a microcomputer. A laser light was projected vertically on to the surface of a rice leaf segment at a cut-edge, and scattered light and induced fluorescence were observed at the cut-section from a 90° angle to the axis of the laser beam. The intensity of scattered light showed a maximum at several micrometres depth from the leaf surface and a steep gradient afterwards. Fluorescence reached a maximum crossing with the decline curve of the scattered light. The maximum of fluorescence measured at 741 nm was observed at a greater depth from the leaf surface than that at 687 nm, suggesting that part of the fluorescence of the longer wavelength was emitted due to absorption of fluorescence of the shorter wavelength. Profiles of the scattered light and the chlorophyll fluorescence depended on leaf anatomy.  相似文献   

6.
The activities NADH and NADPH dehydrogenases were measured with ferricyanide as electron-acceptor (NADH-FeCN-ox and NADPH-FeCN-ox, respectively) in mitochondria-free chloroplasts of barley leaf segments after receiving various treatments affecting senescence. NADPH-FeCN-ox declined during senescence in the dark, in a way similar to chlorophyll and Hill reaction, and increased when leaf segments were incubated at light. These results suggest that NADPH-FeCN-ox is related to some photosynthetic electron transporter activity (probably ferredoxin-NADP+ oxidoreductase). In contrast, NADH-FeCN-ox is notably stable during senescence in the dark and at light. This activity increased during incubation with kinetin or methyl-jasmonate (Me-JA) but decreased when leaf segments were treated with abscisic acid (ABA). The effects of the inhibitors of protein synthesis cycloheximide and chloramphenicol suggest that the changes of NAD(P)H dehydrogenase activities may depend on protein synthesis in chloroplasts. In senescent leaf, chloroplast NADH dehydrogenase might be a way to dissipate NADH produced in the degradation of excess carbon which is released from the degradation of amino acids.Abbreviations ABA abscisic acid - DCPIP 2,6-dichlorophenol-indo-phenol - DOC deoxycholate - Me-JA methyl jasmonate - NADH-FeCN-ox NADH ferricyanide oxidoreductase - NADPH-FeCN-ox NADPH ferricyanide oxidoreductase  相似文献   

7.
High energy state quenching of chlorophyll fluorescence (qE) is inhibited by low concentrations of the inhibitor antimycin A in intact and osmotically shocked chloroplasts isolated from spinach and pea plants. This inhibition is independent of any effect upon pH (as measured by 9-aminoacridine fluorescence quenching). A dual control of qE formation, by pH and the redox state of an unidentified chloroplast component, is implied. Results are discussed in terms of a role for qE in the dissipation of excess excitation energy within photosystem II.Abbreviations 9-AAmax = Maximum yield of 9-aminoacridine fluorescence - DCMU = 3(3,4-dichlorophenyl)-1,1-dimethylurea; Fmax ± Maximum yield of chlorophyll fluorescence - hr = hour - PAR = Photosynthetically Active Radiation - QA = Primary stable electron acceptor within photosystem II - qE = High energy state quenching of chlorophyll fluorescence - qI = quenching of chlorophyll fluorescence related to photoinhibition - qP = Quenching of chlorophyll fluorescence by oxidised plastoquinone - qQ = photochemical quenching of chlorophyll fluorescence - qR = (Fmax—maximum level of chlorophyll fluorescence induced by the addition of saturating DCMU) - qT = Quenching of chlorophyll fluorescence attributable to state transitions  相似文献   

8.
Spinach plunts (Spinacia oleracea L. cv. Monosa) were exposed to air with and without 0.25 μl l-1 H2S. Effects of H2S exposure for up to 18 days on photosynthesis, dark respiration and on chlorophyll a fluorescence were studied. Dark respiration was not affected by H2S fumigation. Photosynthetic CO2 fixation decreased linearly with time in both control and fumigated plants. The rate of decrease in CO2 fixation was faster in the fumigated plants; after 14 days of exposure the fumigated plants showed a decrease in CO2 fixation of 23%äs compared with the control plants. The H2S-induced decrease in CO2 fixation was accompanied by a decrease in quenching of the chlorophyll fluorescence. The most characteristic change in chlorophyll fluorescence was a decreased difference between maximum and steady-state fluorescence [(P-T)/P), suggesting a reduced efficiency in the use of photochemical energy in photosynthesis. Differences in CO2 fixation were more pronounced whcn measured at high light intensity; the maximum rate of CO2 fixation at light saturation decreased significantly with time in the H2S-exposed plants; after 14 days of H2S exposure a decrease of more than 70% was noted. The decrease in CO2 fixation could not be attributed to a decreased chlorophyll content; on the contrary, chlorophyll content even slightly increased during fumigation. The initial increase in CO2 fixation rate with increasing light intensity was also reduced by prolonged H2S fumigation, indicating an effect of H2S fumigation on photosynthetic electron transport. Finally, the phytotoxicity of H2S is discusscd in relation to the H2S-induced changes in photosynthetic CO2 fixation and chlorophyll a fluorescence, and the effect of H2S on leaf development observed in earlier studies.  相似文献   

9.
High-light treatments (1750–2000 mol photons m–2 · s–1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (F M, 692 and F M, 734). The response of instantaneous fluorescence at 692 nm (F O, 692) was complex. In leaves of some species F O, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of F O, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (F V/F M, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2–free gas stream containing 2% O2 and 98% N2 under weak light (100 mol · m–2 · s–1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both F O, 692 and F M, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in F O, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both F O, 692 and F M, 692 This general quenching had a much longer relaxation time than reported for pH-dependent quenching in algae and chloroplasts. Sun leaves, whose F V/F M, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.Abbreviations and symbols kDa kilodalton - LHC-II light-harvesting chlorophyll-protein complex - PFD photon flux density (photon fluence rate) - PSI, PSII photosystem I, II - F O, F M, F V instantaneous, maximum, variable fluorescence emission - absorptance - a photon yield of O2 evolution (absorbed light) C.I.W.-D.P.B. Publication No. 925  相似文献   

10.
Chlorophyll a fluorescence rise kinetics (from 50 μs to 1 s) were used to investigate the non-photochemical reduction of the plastoquinone (PQ) pool in osmotically broken spinach chloroplasts (Spinacia oleracea L.). Incubation of the chloroplasts in the presence of exogenous NADPH or NADH resulted in significant changes in the shape of the fluorescence transient reflecting an NAD(P)H-dependent accumulation of reduced PQ in the dark, with an extent depending on the concentration of NAD(P)H and the availability of oxygen; the dark reduction of the PQ pool was saturated at lower NAD(P)H concentrations and reached a higher level when the incubation took place under anaerobic conditions than when it occurred under aerobic conditions. Under both conditions NADPH was more effective than NADH in reducing PQ, however only at sub-saturating concentrations. Neither antimycin A nor rotenone were found to alter the effect of NAD(P)H. The addition of mercury chloride to the chloroplast suspension decreased the NAD(P)H-dependent dark reduction of the PQ pool, with the full inhibition requiring higher mercury concentrations under anaerobic than under aerobic conditions. This is the first time that this inhibitory role of mercury is reported for higher plants. The results demonstrate that in the dark the redox state of the PQ pool is regulated by the reduction of PQ via a mercury-sensitive NAD(P)H-PQ oxidoreductase and the reoxidation of reduced PQ by an O2-dependent pathway, thus providing additional evidence for the existence of a chlororespiratory electron transport chain in higher plant chloroplasts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary The NAD(P)H:quinone oxidoreductase activity of tobacco leaves is catalyzed by a soluble flavoprotein [NAD(P)H-QR] and membrane-bound forms of the same enzyme. In particular, the activity associated with the plasma membrane cannot be released by hypoosmotic and salt washing of the vesicles, suggesting a specific binding. The products of the plasma-membrane-bound quinone reductase activity are fully reduced hydroquinones rather than semi-quinone radicals. This peculiar kinetic property is common with soluble NAD(P)H-QR, plasma-membrane-bound NAD(P)H:quinone reductase purified from onion roots, and animal DT-diaphorase. These and previous results demonstrate that soluble and plasma-membrane-bound NAD(P)H:quinone reductases are strictly related flavo-dehydrogenases which seem to replace DT-diaphorase in plant tissues. Following purification to homogeneity, the soluble NAD(P)H-QR from tobacco leaves was digested. Nine peptides were sequenced, accounting for about 50% of NAD(P)H-QR amino acid sequence. Although one peptide was found homologous to animal DT-diaphorase and another one to plant monodehydroascorbate reductase, native NAD(P)H-QR does not seem to be structurally similar to any known flavoprotein.Abbreviations MDAR monodehydroascorbate reductase - PM plasma membrane - NAD(P)H-QR NAD(P)H:quinone oxidoreductase - DPI diphenylene iodonium - DQ duroquinone - CoQ2 coenzyme Q2  相似文献   

12.
D. H. Greer  W. A. Laing 《Planta》1988,175(3):355-363
Photoinhibition of photosynthesis was induced in intact kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson) leaves grown at two photon flux densities (PFDs) of 700 and 1300 mol·m-2·s-1 in a controlled environment, by exposing the leaves to PFD between 1000 and 2000 mol·m-2·s-1 at temperatures between 10 and 25°C; recovery from photoinhibition was followed at the same range of temperatures and at a PFD between 0 and 500 mol·m-2·s-1. In either case the time-courses of photoinhibition and recovery were followed by measuring chlorophyll fluorescence at 692 nm and 77K and by measuring the photon yield of photosynthetic O2 evolution. The initial rate of photoinhibition was lower in the high-light-grown plants but the long-term extent of photoinhibition was not different from that in low-light-grown plants. The rate constants for recovery after photoinhibition for the plants grown at 700 and 1300 mol·m-2·s-1 or for those grown in shade were similar, indicating that differences between sun and shade leaves in their susceptibility to photoinhibition could not be accounted for by differences in capacity for recovery during photoinhibition. Recovery following photoinhibition was increasingly suppressed by an increasing PFD above 20 mol·m-2·s-1, indicating that recovery in photoinhibitory conditions would, in any case, be very slow. Differences in photosynthetic capacity and in the capacity for dissipation of non-radiative energy seemed more likely to contribute to differences in susceptibility to photoinhibition between sun and shade leaves of kiwifruit.Abbreviations and symbols F o , F m , F v instantaneous, maximum, variable fluorescence - F v /F m fluorescence ratio - F i =F v at t=0 - F F v at t= - K D rate constant for photochemistry - k(F p ) first-order rate constant for photoinhibition - k(F r ) first-order rate constant for recovery - PFD photon flux density - PSII photosystem II - i photon yield of O2 evolution (incident light)  相似文献   

13.
Ivanov B  Edwards G 《Planta》2000,210(5):765-774
 Non-photochemical quenching of chlorophyll fluorescence (NPQ) and quantum yield of photosystem II (PSII) were studied with intact mesophyll chloroplasts of maize (Zea mays L.) during the initial minutes of illumination using the pulse-modulated chlorophyll fluorescence technique. Non-photochemical quenching was rapidly reversible in the dark at any point during illumination, which is indicative of energy-dependent dissipation of energy (mediated via thylakoid ΔpH changes and ascorbate-dependent synthesis of zeaxanthin). In chloroplasts suspensions including 15 mM ascorbate in the medium, with addition of oxaloacetate and pyruvate, the PSII yield, rate of reduction of oxaloacetate and phosphorylation of pyruvate reached a maximum after approximately 2 min of illumination. Under these conditions, which promote phosphorylation and a decreased ΔpH across the thylakoid membrane, NPQ rose to a maximum after 2–3 min of illumination, dropped to a minimum after about 6 min, and then increased to a steady-state level. A rather similar pattern was observed when leaves were illuminated following a 30-min dark period. Providing chloroplasts with higher levels of ascorbate (60 mM), prevented the transient drop in NPQ. Anaerobic conditions or addition of potassium cyanide caused a decrease in PSII yield, providing evidence for operation of the ascorbate-dependent Mehler-peroxidase reaction. These conditions also strongly suppressed the transient drop in NPQ. Dithiothreitol, an inhibitor of violaxanthin de-epoxidase, caused a large drop in NPQ even in the presence of high levels of ascorbate. The results suggest that the decline of NPQ occurs in response to an increase in lumen pH after initiation of phosphorylation, that this decline can be suppressed by conditions where ascorbate is not limiting for violaxanthin de-epoxidase, and that the increase of NPQ after such a decline is the result of development of energy dissipation in PSII reaction centers. Received: 13 August 1999 / Accepted: 17 September 1999  相似文献   

14.
When nitrate was added to anaerobic resting cultures of Escherichia coli, two different profiles of NAD(P)H fluorescence were observed. E. coli is known to reduce nitrate to ammonia via nitrite as an anaerobic respiration mechanism. The profile showing single-stage response corresponded to situations where the nitrite formed from nitrate reduction was immediately converted to ammonia. The other profile showing two-stage response resulted from a much slower reduction of nitrite than nitrate. Nitrite thus accumulated during the first stage and was gradually reduced to ammonia when nitrate was depleted, i.e. in the second stage. An undamped oscillation of NAD(P)H fluorescence was also observed in the cultures showing the two-stage response. The oscillation was always detected during the second stage and seldom during either the first stage or the recovered anaerobic stage (after complete nitrite reduction). It never occurred in the cultures showing the single-stage response. The period of oscillation ranged from 1 to 5min. The possibility of the common glycolytic oscillation being responsible is low, as judged from the current knowledge of the nitrate/nitrite reductases of E. coli and the observations in this study. This is the first report on the occurrence of oscillatory NAD(P)H fluorescence in E. coli.  相似文献   

15.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

16.
D. H. Greer  W. A. Laing  T. Kipnis 《Planta》1988,174(2):152-158
Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 mol·m-2·s-1, by exposing them to a PFD of 1500 mol·m-2·s-1. The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.Abbreviations and symbols fluorescence yield correction coefficient - F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, energy transfer to photosystem I - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

17.
CO2 exchange, variable chlorophyll fluorescence, the intensity of lipid peroxidation (POL), and the activity of antioxidant enzymes in leaves of two-week-old pea seedlings (Pisum sativum L.) exposed to 0.01, 0.1, and 1 mM aqueous solutions of Cd(NO3)2 for 2 h were studied. Incubation with Cd2+ ions resulted in a reduction of the maximum quantum efficiency of photosynthesis, CO2 uptake rate, and photosystem II (PSII) activity, as assessed by F v/F 0 ratio. The intensity of POL in leaves of all treated seedlings was below or close to the control level. The activity of superoxide dismutase (SOD) and glutathione reductase (GR) increased in all treatments; the activity of ascorbate peroxidase (AP) exceeded the control level only in seedlings exposed to the high Cd2+ concentration (1 mM), and the activity of peroxidase increased at the low concentration (0.01 mM). We found that the reduction in the activity of the photosynthetic apparatus under conditions of 2-h-long Cd2+-induced stress was not related to an intensification of POL processes. It was concluded that stimulation of the activity of antioxidant enzymes—SOD, GR, AP, and peroxidase—is a pathway for pea plant adaptation to toxic effect of cadmium.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 21–26.Original Russian Text Copyright © 2005 by Balakhnina, Kosobryukhov, Ivanov, Kreslavskii.  相似文献   

18.
Localised changes in photosynthesis in oat leaves infected with the biotrophic rust fungus Puccinia coronata Corda were examined at different stages of disease development by quantitative imaging of chlorophyll fluorescence. Following inoculation of oat leaves with crown rust the rate of whole-leaf gas exchange declined. However, crown rust formed discrete areas of infection which expanded as the disease progressed and these localised regions of infection gave rise to heterogeneous changes in photosynthesis. To quantify these changes, images of chlorophyll fluorescence were taken 5, 8 and 11 d after inoculation and used to calculate images representing two parameters; ΦII, a measure of PSII photochemical efficiency and ΔFm/Fm′, a measure of non-photochemical energy dissipation (qN). Five days after inoculation, disease symptoms appeared as yellow flecks which were correlated with the extent of the fungal mycelium within the leaf. At this stage, ΔII was slightly reduced in the infected regions but, in uninfected regions of the leaf, values of ΦII were similar to those of healthy leaves. In contrast, qN (ΔFm/Fm′) was greatly reduced throughout the infected leaf in comparison to healthy leaves. We suggest that the low value of qN in an infected leaf reflects a high demand for ATP within these leaves. At sporulation, 8 d after inoculation, ΦII was reduced throughout the infected leaf although the reduction was most marked in areas invaded by fungal mycelium. In the infected leaf the pattern of non-photochemical quenching was complex; qN was low within invaded regions, perhaps reflecting high metabolic activity, but was now much higher in uninfected regions of the infected leaf, in comparison to healthy leaves. Eleven days after inoculation “green islands” formed in regions of the leaf associated with the fungal mycelium. At this stage, photosynthesis was severely inhibited over the entire leaf; however, heterogeneity was still apparent. In the region not invaded by the fungal mycelium, ΦII and qN were very low and these regions of the leaf were highly fluorescent, indicating that the photosynthetic apparatus was severely damaged. In the greenisland tissue, ΦII was low but detectable, indicating that some photosynthetic processes were still occurring. Moreover, qN was high and fluorescence low, indicating that the cells in this region were not dead and were capable of significant quenching of chlorophyll fluorescence.  相似文献   

19.
The effect of treatment with benzothiadiazole (BTH) or l -2-oxothiazolidine-4-carboxylic acid (OTC), and their interaction with Plum pox virus (PPV) infection, on antioxidative metabolism of pea plants was studied at the subcellular level. PPV infection produced a 20% reduction in plant growth. Pre-treatment of pea plants with OTC or BTH afforded partial protection against PPV infection, measured as the percentage of leaves showing symptoms, but neither BTH nor OTC significantly reduced the virus content. PPV infection caused oxidative stress, as monitored by increases in lipid peroxidation and protein oxidation in soluble and chloroplastic fractions. In leaves of non-infected plants, OTC increased the content of reduced glutathione (GSH) and total glutathione; accordingly, an increase in the redox state of glutathione was observed. An increase in oxidized glutathione (GSSG) was found in symptomatic leaves from infected plants. A similar increase in GSSG was also observed in asymptomatic leaves from infected, untreated plants. However, no changes in GSSG occurred in asymptomatic leaves from infected plants treated with BTH and OTC and, accordingly, a higher redox state of GSH was recorded in those leaves, which could have had a role in the reduction of symptoms, as observed in asymptomatic leaves from infected plants treated with BTH or OTC. Treatment with BTH or OTC had some effect on antioxidant enzymes in soluble and chloroplastic fractions from infected pea leaves. An increase in antioxidative mechanisms, such as GSH-related enzymes (DHAR, GR and G6PDH), as well as APX and POX, at the subcellular level was observed, which could play a role in reducing the severity of cellular damage induced by Sharka in pea leaves.  相似文献   

20.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII photosystem II - Fm maximum fluorescence obtained on application of a saturating light pulse - Fo basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open) - Fv Fm-Fo - qQ photochemical quenching - qNP non-photochemical quenching - qE energy-dependent quenching of chlorophyll fluorescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号