首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC) disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU) mutagenesis screen and have identified a novel dominant (haploinsufficient) mutation in the Ank-1 gene (Ank1(MRI23420)) of mice displaying hereditary spherocytosis (HS). Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt). A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6-8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05). We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.  相似文献   

2.
SYNOPSIS. Methods for the isolation and purification of DNA from the intraerythrocytic stages of the avian malaria parasite Plasmodium lophurae are described. The DNA of P. lophurae was found to have a 19 mole-percent guanine plus cytosine (G+C) composition as determined by melting temperature and density measurements in CsCl gradients, whereas that of the host cell nucleus was 35 molepercent G+C. Synthesis of DNA by P. lophurae was studied by following the incorporation of P32 during the in vitro growth of plasmodia in infected cell suspension cultures. DNA synthesis was linear during the multiple nuclear divisions of a single growth cycle in highly synchronous cultures. Separation of P32 labeled parasite DNA from the DNA of the duck erythrocyte on CsCl gradients showed that only parasite DNA was synthesized.  相似文献   

3.
The polymerisation of haemoglobin-derived ferri-protoporphyrin IX (Fe(III)PPIX) to haemozoin (malaria pigment) is a crucial process for intraerythrocytic plasmodia to prevent haem toxicity. It is also the target of in-use antimalarial drugs and newer compounds. This reaction and the inhibition thereof can be reproduced and studied in vitro.  相似文献   

4.
The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2), which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb) digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl)-1,4-dioxide-quinoxaline; BBMQ), has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ), an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria.  相似文献   

5.
Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.  相似文献   

6.
Plasmodium falciparum is the causative agent of the most dangerous form of malaria in humans. It has been reported that the P. falciparum genome encodes for a single ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), an enzyme that hydrolyzes extracellular tri- and di-phosphate nucleotides. The E-NTPDases are known for participating in invasion and as a virulence factor in many pathogenic protozoa. Despite its presence in the parasite genome, currently, no information exists about the activity of this predicted protein. Here, we show for the first time that P. falciparum E-NTPDase is relevant for parasite lifecycle as inhibition of this enzyme impairs the development of P. falciparum within red blood cells (RBCs). ATPase activity could be detected in rings, trophozoites, and schizonts, as well as qRT-PCR, confirming that E-NTPDase is expressed throughout the intraerythrocytic cycle. In addition, transfection of a construct which expresses approximately the first 500 bp of an E-NTPDase-GFP chimera shows that E-NTPDase co-localizes with the endoplasmic reticulum (ER) in the early stages and with the digestive vacuole (DV) in the late stages of P. falciparum intraerythrocytic cycle.  相似文献   

7.
Resealed erythrocyte ghosts were prepared under different experimental conditions and were tested in vitro for susceptibility to infection with the human malarial parasite, Plasmodium falciparum. Resealed ghosts, prepared by dialyzing erythrocytes in narrow membrane tubing against low ionic strength buffer that was supplemented with magnesium ATP, were as susceptible to parasite infection as were normal erythrocytes. There was a direct correlation between intraerythrocytic ATP content and susceptibility to parasite infection. Neither MgCl2 nor sodium ATP could be substituted for magnesium ATP in maintaining high intraerythrocytic ATP concentration. When resealed ghosts were loaded with antispectrin IgG, malaria merozoite invasion was inhibited. At an average intracellular antispectrin IgG concentration of 3.5 micrograms/10(8) cells, there was a 35% inhibition of parasite invasion. This inhibition was due to spectrin crosslinking within the resealed ghosts, since the monovalent, Fab' fragments of antispectrin IgG had no inhibitory effect on invasion. These results indicate that the cytoskeleton plays a role in the complex process of merozoite entry into the host erythrocyte.  相似文献   

8.
Lew VL 《Current biology : CB》2005,15(18):R760-R761
The erythrocytic asexual reproduction cycle of Plasmodium falciparum, the most lethal malaria parasite in humans, starts with the invasion of a red blood cell by a merozoite and ends with the release of up to 32 new copies of itself in about 48 hours. A new study reveals that merozoite release is an explosive event ensuring the dispersal of these non-motile parasites for optimal re-invasion of new red cells.  相似文献   

9.
A novel fixative and permeabilization method is described which allows simultaneous flow cytometric detection of red blood cell membrane antigen and intracellular malaria parasites. To illustrate the method, red blood cells from patients with paroxysmal nocturnal hemoglobinuria were infected with Plasmodium falciparum and maintained in synchronous red blood cell culture. The infected red blood cells were immunolabeled with antibodies directed to the complement regulatory protein decay-accelerating factor (DAF) followed by subsequent fixations in paraformaldehyde and then glutaraldehyde in phosphate-buffered saline. Finally, DNA of the intraerythrocytic parasites was stained with propidium iodide. Using this technique, cellular morphology was well preserved, no cell aggregation was observed, and high-quality indirect immunofluorescence and parasite DNA staining were obtained with negligible nonspecific labelling. Simultaneous measurement of parasite DNA and red blood cell membrane determinants makes possible the investigation of alterations of red cell membrane proteins in association with development of intracellular malaria parasites.  相似文献   

10.
The malaria life cycle relies on the successful transfer of the parasite between its human and mosquito hosts. We identified a Plasmodium berghei secreted protein (PBANKA_131270) that plays distinct roles in both the mammal-to-mosquito and the mosquito-to-mammal transitions. This protein, here named gamete egress and sporozoite traversal (GEST), plays an important role in the egress of male and female gametes from the vertebrate red blood cell. Interestingly, GEST is also required following the bite of the infected mosquito, for sporozoite progression through the skin. We found PbGEST to be secreted shortly after activation of the intraerythrocytic gametocyte, and during sporozoite migration. These findings indicate that a single malaria protein may have pleiotropic roles in different parasites stages mediating transmission between its insect and mammalian hosts.  相似文献   

11.
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.  相似文献   

12.
Plasmodium vivax malaria caused is a public health problem that produces very high morbidity worldwide. During invasion of red blood cells the parasite requires the intervention of high molecular weight complex rhoptry proteins that are also essential for cytoadherence. PfClag9, a member of the RhopH multigene family, has been identified as being critical during Plasmodium falciparum infection. This study describes identifying and characterizing the pfclag9 ortholog in P. vivax (hereinafter named pvclag7). The pvclag7 gene is transcribed at the end of the intraerythrocytic cycle and is recognized by sera from humans who have been infected by P. vivax. PvClag7 subcellular localization has been also determined and, similar to what occurs with PfClag9, it co-localize with other proteins from the Rhoptry high molecular weight complex.  相似文献   

13.
Malaria is clinically manifested only when the human malaria parasites in the genus Plasmodium enter the obligatory intraerythrocytic life cycle. Elucidation for the roles of the serum, the key nutrient, and its components is then deemed essential for thorough understanding of the proliferation of Plasmodium cells at the erythrocytic stage. Fractionation and analysis of serum and its components was performed by chromatography, solvent extraction, and subsequent reconstitution experiments. Only fractions containing serum albumin (SA) from the serum and purified intact bovine serum albumin (BSA) showed comparable growth promoting activity with human serum (HS). Delipidated BSA can only effect parasite growth after reconstitution with lipids extracted from intact BSA. Fatty acid (FA) species in the neutral lipid fraction from intact BSA proved likewise when reconstituted with delipidated BSA. Furthermore, the involved FA species have to come in a pair of one saturated and one unsaturated, with palmitic and oleic acids as the best combination. The results were further substantiated by morphological analysis as well as biochemical analysis of the DNA synthesis during the intraerythrocytic development. This study can be a basis to explore the molecular mechanism of lipid traffic within the parasitized red blood cell (RBC), which can be an important adjunct to the development of drugs for malaria therapy.  相似文献   

14.
The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However - in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins.  相似文献   

15.
BackgroundHaemoglobin variants, Sickle (HbS) and foetal (HbF) have been associated with malaria protection. This study explores epistatic interactions between HbS and HbF on malaria infection.MethodsThe study was conducted between March 2004 and December 2013 within the sickle cell disease (SCD) programme at Muhimbili National Hospital, Tanzania. SCD status was categorized into HbAA, HbAS and HbSS using hemoglobin electrophoresis and High Performance Liquid Chromatography (HPLC). HbF levels were determined by HPLC. Malaria was diagnosed using rapid diagnostic test and/or blood film. Logistic regression and generalized estimating equations models were used to evaluate associations between SCD status, HbF and malaria.Findings2,049 individuals with age range 0-70 years, HbAA 311(15.2%), HbAS 241(11.8%) and HbSS 1,497(73.1%) were analysed. At enrolment, malaria prevalence was significantly higher in HbAA 13.2% compared to HbAS 1.24% and HbSS 1.34% (p<0.001). Mean HbF was lower in those with malaria compared to those without malaria in HbAA (0.43% vs 0.82%) but was the reverse in HbSS (8.10% vs 5.59%). An increase in HbF was associated with a decrease in risk of malaria OR=0.50 (95%CI: 0.28, 0.90; p=0.021) in HbAA, whereas for HbSS the risk of malaria increased OR=2.94 (1.44, 5.98; p=0.003). A similar pattern was seen during multiple visits; HbAA OR=0.52 (0.34, 0.80; p=0.003) vs HbSS OR=2.01 (1.27, 3.23; p=0.003).ConclusionHigher prevalence of malaria in HbAA compared to HbAS and HbSS confirmed the protective effect of HbS. Lower prevalence of malaria in HbAA with high HbF supports a protective effect of HbF. However, in HbSS, the higher prevalence of malaria with high levels of HbF suggests loss of malaria protection. This is the first epidemiological study to suggest a negative epistasis between HbF and HbS on malaria.  相似文献   

16.
Nyalwidhe J  Lingelbach K 《Proteomics》2006,6(5):1563-1573
After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole (PV) which forms an interface between the host cell cytosol and the parasite surface. This vacuole protects the parasite from potentially harmful substances, but allows access of essential nutrients to the parasite. Furthermore, the vacuole acts as a transit compartment for parasite proteins en route to the host cell cytoplasm. Recently we developed a strategy to biotin label soluble proteins of the PV. Here, we have paired this strategy with a high-throughput MALDI-TOF-MS analysis to identify 27 vacuolar proteins. These proteins fall into the following main classes: chaperones, proteases, and metabolic enzymes, consistent with the expected functions of the vacuole. These proteins are likely to be involved in several processes including nutrient acquisition from the host cytosol, protein sorting within the vacuole, and release of parasites at the end of the intraerythrocytic cycle.  相似文献   

17.
The malaria parasite Plasmodium falciparum replicates within an intraerythrocytic parasitophorous vacuole (PV). Rupture of the host cell allows release (egress) of daughter merozoites, which invade fresh erythrocytes. We previously showed that a subtilisin-like protease called PfSUB1 regulates egress by being discharged into the PV in the final stages of merozoite development to proteolytically modify the SERA family of papain-like proteins. Here, we report that PfSUB1 has a further role in ‘priming' the merozoite prior to invasion. The major protein complex on the merozoite surface comprises three proteins called merozoite surface protein 1 (MSP1), MSP6 and MSP7. We show that just before egress, all undergo proteolytic maturation by PfSUB1. Inhibition of PfSUB1 activity results in the accumulation of unprocessed MSPs on the merozoite surface, and erythrocyte invasion is significantly reduced. We propose that PfSUB1 is a multifunctional processing protease with an essential role in both egress of the malaria merozoite and remodelling of its surface in preparation for erythrocyte invasion.  相似文献   

18.
Severe malaria is primarily caused by Plasmodium falciparum parasites during their asexual reproduction cycle within red blood cells. One of the least understood stages in this cycle is the brief preinvasion period during which merozoite-red cell contacts lead to apical alignment of the merozoite in readiness for penetration, a stage of major relevance in the control of invasion efficiency. Red blood cell deformations associated with this process were suggested to be active plasma membrane responses mediated by transients of elevated intracellular calcium. Few studies have addressed this hypothesis because of technical challenges, and the results remained inconclusive. Here, Fluo-4 was used as a fluorescent calcium indicator with optimized protocols to investigate the distribution of the dye in red blood cell populations used as P. falciparum invasion targets in egress-invasion assays. Preinvasion dynamics was observed simultaneously under bright-field and fluorescence microscopy by recording egress-invasion events. All the egress-invasion sequences showed red blood cell deformations of varied intensities during the preinvasion period and the echinocytic changes that follow during invasion. Intraerythrocytic calcium signals were absent throughout this interval in over half the records and totally absent during the preinvasion period, regardless of deformation strength. When present, calcium signals were of a punctate modality, initiated within merozoites already poised for invasion. These results argue against a role of elevated intracellular calcium during the preinvasion stage. We suggest an alternative mechanism of merozoite-induced preinvasion deformations based on passive red cell responses to transient agonist-receptor interactions associated with the formation of adhesive coat filaments.  相似文献   

19.
The invasion of human red blood cells (RBC) by plosmodiol merozoites is a key event during malaria infection, and the inhibition o f invasion is regarded as a crucial goal of malaria vaccine development. For Plasmodium falciparum it has been suggested that the red cell sialoglycoproteins, glycophorins A, B and C, are receptors for invasion and that O-linked or N-linked carbohydrate structures may be involved as receptor sites(1-3). However, recent evidence suggests that the role o f these sialoglycoproteins and carbohydrates may have been overestimated. In this article, Peter Hermentin discusses the contradictory findings and presents a revised model for the invasion process.  相似文献   

20.
When malaria parasites enter red blood cells they precipitate on influx of substrates necessary for their development. For example, intraerythrocytic trophozoites of Plasmodium falciparum use exogenous t-glutamine in increasing amounts during maturation from the ring-stage. This is made possible by a marked and selective increase in the permeability of the host cell membrane. Several compounds have now been identified as inhibitors of the l-glutamine influx induced by P. falciparum; they are all natural products - either analogues of l-glutamine, or related to indigenous traditional remedies for malaria. In this article, Barry El ford shows that although these compounds may not be of immediate practical value as antimolarials, they can provide valuable insight into the mechanisms underlying the regulation of these parasite-mediated transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号