首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine transport into rat brain mitochondria (synaptic and non-synaptic) was monitored by the uptake of [3H]glutamine as well as by mitochondrial swelling. The uptake is inversely correlated to medium osmolarity, temperature-dependent, saturable and inhibited by mersalyl, and glutamine is upconcentrated in the mitochondria. These results indicate that glutamine is transported into an osmotically active space by a protein catalyzed mechanism. The uptake is slightly higher in synaptic mitochondria than in non-synaptic ones. It is inhibited both by rotenone and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, the latter at pH 6.5, showing that the transport is activated by an electrochemical proton gradient. The K+/H+ ionophore nigericin also inhibits the uptake at pH 6.5 in the presence of external K+, which indicates that glutamine, at least in part, is taken up by a proton symport transporter. In addition, glutamine uptake as measured by the swelling technique revealed an additional glutamine transport activity with at least 10 times higher Km value. This uptake is inhibited by valinomycin in the presence of K+ and is thus also activated by the membrane potential. Otherwise, the two methods show similar results. These data indicate that glutamine transport in brain mitochondria cannot be described by merely a simple electroneutral uniport mechanism, but are consistent with the uptake of both the anionic and the zwitterionic glutamine.  相似文献   

2.
Preferential glutamine uptake in rat brain synaptic mitochondria   总被引:1,自引:0,他引:1  
A Steib  A Rendon  J Mark  J Borg 《FEBS letters》1986,207(1):63-68
Glutamine uptake has been studied in purified rat brain mitochondria of synaptic or non-synaptic origin. It was taken up by an active saturable transport mechanism, with an affinity two-times higher in synaptic than in non-synaptic mitochondria (Km = 0.45 and 0.94 mM, respectively). Vmax of uptake was 7-times higher in synaptic mitochondria (Vmax = 9.2 and 1.3 nmol/min per mg protein, respectively). Glutamine transport was found to be inhibited by L-glutamate (IC50 = 0.64 mM) as well as thiol reagents (mersalyl, N-ethylmaleimide). It is suggested that differential uptake of glutamine in mitochondria of synaptic or non-synaptic origin may be a major mechanism in the regulation of the synthesis of the neurotransmitter glutamate.  相似文献   

3.
Preparation and properties of mitochondria derived from synaptosomes.   总被引:33,自引:8,他引:25       下载免费PDF全文
A method has been developed whereby a fraction of rat brain mitochondria (synaptic mitochondria) was isolated from synaptosomes. This brain mitochondrial fraction was compared with the fraction of "free" brain mitochondria (non-synaptic) isolated by the method of Clark & Nicklas (1970). (J. Biol. Chem. 245, 4724-4731). Both mitochondrial fractions are shown to be relatively pure, metabolically active and well coupled. 2. The oxidation of a number of substrates by synaptic and non-synaptic mitochondria was studied and compared. Of the substrates studied, pyruvate plus malate was oxidized most rapidly by both mitochondrial populations. However, the non-synaptic mitochondria oxidized glutamate plus malate almost twice as rapidly as the synaptic mitochondria. 3. The activities of certain tricarboxylic acid-cycle and related enzymes in synaptic and non-synaptic mitochondria were determined. Citrate synthase (EC 4.1.3.7), isocitrate dehydrogenase (EC 1.1.1.41) and malate dehydrogenase (EC 1.1.1.37) activities were similar in both fractions, but pyruvate dehydrogenase (EC 1.2.4.1) activity in non-synaptic mitochondria was higher than in synaptic mitochondria and glutamate dehydrogenase (EC 1.4.1.3) activity in non-synaptic mitochondria was lower than that in synaptic mitochondria. 4. Comparison of synaptic and non-synaptic mitochondria by rate-zonal separation confirmed the distinct identity of the two mitochondrial populations. The non-synaptic mitochondria had higher buoyant density and evidence was obtained to suggest that the synaptic mitochondria might be heterogeneous. 5. The results are also discussed in the light of the suggested connection between the heterogeneity of brain mitochondria and metabolic compartmentation.  相似文献   

4.
Glutamine transport into rat brain synaptic and non-synaptic mitochondria has been monitored by the uptake of [3H]glutamine and by mitochondrial swelling. The concentration of glutamate in brain mitochondria is calculated to be high, 5–10 mM, indicating that phosphate activated glutaminase localized inside the mitochondria is likely to be dormant and the glutamine taken up not hydrolyzed. The uptake of [3H]glutamine is largely stereospecific. It is inhibited by glutamate, asparagine, aspartate, 2-oxoglutarate and succinate. Glutamate inhibits this uptake into synaptic and non-synaptic mitochondria by 95 and 85%, respectively. The inhibition by glutamate, asparagine, aspartate and succinate can be explained by binding to an inhibitory site whereas the inhibition by 2-oxoglutarate is counteracted by aminooxyacetic acid, which indicates that it is dependent on transamination. The glutamine-induced swelling, a measure of a very low affinity uptake, is inhibited by glutamate at a glutamine concentration of 100 mM, but this inhibition is abolished when the glutamine concentration is raised to 200 mM. This suggests that the very low affinity glutamine uptake is competitively inhibited by glutamate. Furthermore, glutamine-induced swelling is inhibited by 2-oxoglutarate, succinate and malate, similarly to that of the [3H]glutamine uptake. The properties of the mitochondrial glutamine transport are not identical with those of a recently purified renal glutamine carrier.  相似文献   

5.
The effects of in vitro treatment with ammonium chloride and acute hepatic encephalopathy (HE) induced by thioacetamide treatment (TAA), on the 2-oxoglutarate dehydrogenase (OGDH) activity in synaptic and nonsynaptic mitochondria from rat brain were examined. In control conditions, Vmax and Km for 2-oxoglutaric acid (2-OG) were higher in the synaptic than in nonsynaptic mitochondria by about 45 and 55%, respectively. A particularly high sensitivity of OGDH to ammonium ions in vitro was observed in nonsynaptic mitochondria, as manifested by a 30% decrease of Vmax and a 60% decrease of Km for 2-OG. Synaptic mitochondria showed a slight response to HE which was manifested by a 12% increase of Vmax. In nonsynaptic mitochondria a 19% decrease of Km for 2-OG was observed, but Vmax was unaffected. Nonsynaptic mitochondria from HE rats reacted to the addition of ammonium ions in vitro with a 30% inhibition of Vmax but with no alteration of Km for 2-OG. In synaptic mitochondria from HE rats there was a slight inhibition of Vmax, but an about 15% decrease of Km for 2-OG. Based on these results, the different responses of OGDH in two mitochondrial populations to HE and ammonium ions in vitro would appear to be due to intrinsic differences between the properties of the enzyme in the synaptic and nonsynaptic brain compartments.  相似文献   

6.
Uptake of L-[14C]Gln and phosphate-activated glutaminase (PAG) activity were measured in nonsynaptic mitochondria isolated from rat cerebral hemispheres, in the presence of protein and nonprotein amino acids and their synthetic structural analogues and derivatives. The uptake was inhibited by > 50% in the presence of a 10-fold excess of His, homocysteine (Hcy), Trp, Leu, Tyr, Ile, Thr, Ala, Phe, Met, Ser, by > 20% in the presence of a 10-fold excess of Val, Arg, Glu, and was not affected by a 10-fold excess of Orn, alpha-ketoglutarate, Tau and Pro. Uptake of L-[14C] Leu differed from Gln uptake by its resistance to Arg, Glu, and a relatively high sensitivity to the reference inhibitor of the plasma membrane transport of large neutral amino acids (L-system)--BCH (2-aminobicyclo[2.2.1]heptane-2-carboxylic acid), and a number of natural L-system substrates. A newly synthesized alanine analogue, 2'-cyano-(biphenyl) alanine, referred to as MRC01, was the only compound tested that inhibited Gln uptake more strongly than Leu uptake. The strongest Gln uptake inhibitors: MRC01, His, Hcy and Leu, inhibited PAG activity by > 50% when added at the inhibitor/Gln concentration ratio of 1:2. PAG activity was not affected by Tau, Lys or Pro, compounds which did affect Gln uptake. The results suggest that a number of natural amino acids function as common endogenous modulators of cerebral mitochondrial Gln uptake and its degradation. MRC01, because of its inhibitory potency towards both mitochondrial Gln uptake and PAG activity, may become a convenient tool in studying the role of Gln transport in its mitochondrial metabolism in intact CNS cell and tissues.  相似文献   

7.
The effects of in vitro treatment with ammonium chloride, hepatic encephalopathy (HE) due to thioacetamide (TAA) induced liver failure and chronic hyperammonemia produced by i.p. administration of ammonium acetate on the two components of the multienzyme 2-oxoglutarate dehydrogenase complex (OGDH): 2-oxoglutarate decarboxylase (E1) and lipoamide dehydrogenase (E3), were examined in synaptic and nonsynaptic mitochondria from rat brain. With regard to E1 the response to ammonium ions in vitro (3 mM NH4Cl) was observed in nonsynaptic mitochondria only and was manifested by a 21% decrease of Vmax and a 35% decrease of Km for 2-oxoglutarate (2-OG). By contrast, both in vivo conditions primarily affected the synaptic mitochondrial E1: TAA-induced HE produced an 84% increase of Vmax and a 38% increase of Km for 2-OG. Hyperammonemia elevated Vmax of E1 by 110% and Km for 2-OG by 30%. HE produced no effect at all in nonsynaptic mitochondria while hyperammonemia produced a 35% increase of Vmax and a 30% increase of Km for 2-OG of E1. Both in vivo conditions produced a 20% increase of E3 activity in synaptic mitochondria, but no effect at all in nonsynaptic mitochondria. The preferential sensitivity of E1 to ammonium chloride in vitro in nonsynaptic mitochondria and hyperammonemic conditions in vivo in synaptic mitochondria may play a crucial role in the compartmentation of OGDH responses under analogous conditions. These results confirm the intrinsic differences between the OGDH properties in the synaptic and nonsynaptic brain compartments.  相似文献   

8.
Roles of glutamine in neurotransmission   总被引:1,自引:0,他引:1  
Glutamine (Gln) is found abundantly in the central nervous system (CNS) where it participates in a variety of metabolic pathways. Its major role in the brain is that of a precursor of the neurotransmitter amino acids: the excitatory amino acids, glutamate (Glu) and aspartate (Asp), and the inhibitory amino acid, γ-amino butyric acid (GABA). The precursor-product relationship between Gln and Glu/GABA in the brain relates to the intercellular compartmentalization of the Gln/Glu(GABA) cycle (GGC). Gln is synthesized from Glu and ammonia in astrocytes, in a reaction catalyzed by Gln synthetase (GS), which, in the CNS, is almost exclusively located in astrocytes (Martinez-Hernandez et al., 1977). Newly synthesized Gln is transferred to neurons and hydrolyzed by phosphate-activated glutaminase (PAG) to give rise to Glu, a portion of which may be decarboxylated to GABA or transaminated to Asp. There is a rich body of evidence which indicates that a significant proportion of the Glu, Asp and GABA derived from Gln feed the synaptic, neurotransmitter pools of the amino acids. Depolarization-induced-, calcium- and PAG activity-dependent releases of Gln-derived Glu, GABA and Asp have been observed in CNS preparations in vitro and in the brain in situ. Immunocytochemical studies in brain slices have documented Gln transfer from astrocytes to neurons as well as the location of Gln-derived Glu, GABA and Asp in the synaptic terminals. Patch-clamp studies in brain slices and astrocyte/neuron co-cultures have provided functional evidence that uninterrupted Gln synthesis in astrocytes and its transport to neurons, as mediated by specific carriers, promotes glutamatergic and GABA-ergic transmission. Gln entry into the neuronal compartment is facilitated by its abundance in the extracellular spaces relative to other amino acids. Gln also appears to affect neurotransmission directly by interacting with the NMDA class of Glu receptors. Transmission may also be modulated by alterations in cell membrane polarity related to the electrogenic nature of Gln transport or to uncoupled ion conductances in the neuronal or glial cell membranes elicited by Gln transporters. In addition, Gln appears to modulate the synthesis of the gaseous messenger, nitric oxide (NO), by controlling the supply to the cells of its precursor, arginine. Disturbances of Gln metabolism and/or transport contribute to changes in Glu-ergic or GABA-ergic transmission associated with different pathological conditions of the brain, which are best recognized in epilepsy, hepatic encephalopathy and manganese encephalopathy.  相似文献   

9.
Rat cerebral nonsynaptic mitochondria were incubated in medium containing 2 mM glutamine (Gln) or 2 mM glutamate (Glu), in the presence of a Gln uptake inhibitor histidine (His) as well as other basic amino acids, lysine and arginine (Lys, Arg) not inhibiting Gln uptake. Subsequently, the mitochondrial contents of Glu and Gln were determined by HPLC. Incubation in the presence of Glu alone increased the Glu content from 3.5 to 15 nmol/mg protein, without affecting the Gln content. On the other hand, incubation with Gln increased the content of Gln from 1.5 to 12 nmol/mg, and that of Glu to 10 nmol/mg. As expected, addition of His did not alter the Glu and Gln content resulting from incubation with Glu. However, His significantly decreased to almost the preincubation level the content of Glu in mitochondria incubated with Gln, without affecting the content of Gln. No other amino acid had any effect on these parameters. The results point to the existence of distinct Gln pools, one of which is accessible to external Gln via a His-sensitive transporter and is accessible for deamidation in the mitochondria.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

10.
Great attention has been devoted both to ageing phenomena at the mitochondrial level and to the antioxidant status of membrane structures. These kinds of investigations are difficult to perform in the brain because of its heterogeneity. It is known that synaptic heavy mitochondria (HM) may represent an aged mitochondrial population characterized by a partial impairment of their typical mitochondrial function. We arranged a novel system requiring no extraction procedure, very limited handling of the samples and their direct injection into the HPLC apparatus, to carry out, for the first time, a systematic and concomitant determination of vitamin E, Coenzyme Q9 (CoQ9) and Coenzyme Q10 (CoQ10) contents in rat brain mitochondria. The trends found for CoQ9 and CoQ10 levels in synaptic and non-synaptic occipital cerebral cortex mitochondria during rat ageing are consistent with previous data. Hydroperoxides (HP) differed with age and it was confirmed that in the HM fraction the summation of contributions results in an oxidatively jeopardized subpopulation. We found that vitamin E seems to increase with age, at least in non-synaptic free (FM) and synaptic light (LM) mitochondria, while it was inclined to remain substantially constant in HM.  相似文献   

11.
1. The effects of the non-ionic detergent Triton X-100 on the heterogeneity of monoamine oxidase activities were studied and compared in synaptic (fractions SM and SM2) and non-synaptic (fraction M) brain mitochondria and liver mitochondria. 2. Triton X-100 inhibited type A and type B monoamine oxidase activities in all four mitochondrial fractions in a concentration-dependent manner. Liver mitochondrial enzymatic activities were much more sensitive to this inhibition than those of brain mitochondria. The activities in the SM fraction of synaptic brain mitochondria were the least susceptible. 3. In all four mitochondrial fractions, type A activities were more sensitive to inhibition than type B activities. 4. These results suggest that the membrane micro-environment around the enzyme molecules in situ may be important in the functional expression of the activity of the enzyme.  相似文献   

12.
The mechanism of fatty acid-dependent uncoupling by mitochondrial uncoupling proteins (UCP) is still in debate. We have hypothesized that the anionic fatty acid head group is translocated by UCP, and the proton is transported electroneutrally in the bilayer by flip-flop of the protonated fatty acid. Alkylsulfonates are useful as probes of the UCP transport mechanism. They are analogues of fatty acids, and they are transported by UCP1, UCP2, and UCP3. We show that undecanesulfonate and laurate are mutually competitive inhibitors, supporting the hypothesis that fatty acid anion is transported by UCP1. Alkylsulfonates cannot be protonated because of their low pK(a), consequently, they cannot catalyze electroneutral proton transport in the bilayer and cannot support uncoupling by UCP. We report for the first time that propranolol forms permeant ion pairs with the alkylsulfonates, thereby removing this restriction. Because a proton is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving as if it were a fatty acid. When ion pair transport is combined with UCP1, we now observe electrophoretic proton transport and uncoupling of brown adipose tissue mitochondria. These experiments confirm that the proton transport of UCP-mediated uncoupling takes place in the lipid bilayer and not via UCP itself. Thus, UCP1, like other members of its gene family, translocates anions and does not translocate protons.  相似文献   

13.
Abstract— A method has been developed where by three distinct populations of metabolically active, well coupled and relatively pure mitochondria from rat brain may be prepared. Two mitochondrial populations are derived from synaptozomes and the third consists of 'free' (i.e. non-synaptic) mitochondria. These mitochondrial populations have been characterized with respect to both enzyme content and ability to oxidize substrates. The results indicate that these mitochondrial populations are heterogeneous with respect to maximal activities of certain enzymes concerned with the citric acid cycle and glutamate and 4-aminobutyrate metabolism as well as their ability to utilize various substrates. The data reported here also confirm that brain mitochondria are very heterogeneous and suggest that synaptic mitochondria may contain at least two sub-populations. The relations between the heterogeneity of brain mitochondria and the metabolic compartmentation of the citric acid cycle and related metabolites such as glutamate, aspartate and 4-aminobutyrate are briefly discussed in the light of two proposed models of metabolic compartmentation in the mammalian brain.  相似文献   

14.
We investigated NADH oxidation in non-synaptic and synaptic mitochondria from brain cortex of 4- and 24-month-old rats. The NADH oxidase activity was significantly lower in non-synaptic mitochondria from aged rats; we also found a significant decrease of sensitivity of NADH oxidation to the specific Complex I inhibitor, rotenone. Since the rotenone-binding site encompasses Complex I subunits encoded by mtDNA, these results are in accordance with the mitochondrial theory of aging, whereby somatic mtDNA mutations are at the basis of cellular senescence. Accordingly, a 5 kb deletion was detected only in the cortex of the aged animals.  相似文献   

15.
The maximum rates (Vmax) of some mitochondrial enzyme activities related to energy transduction (citrate synthase, malate dehydrogenase, NADH cytochrome c reductase, cytochrome oxidase) and amino acid metabolism (glutamate dehydrogenase) were evaluated in non-synaptic (free) and synaptic mitochondria from rat hippocampus and striatum. Three types of mitochondria were isolated from control rats aged 4, 8, 12, 16, 20 and 24 months and treated ones withl-acetylcarnitine (100 mg·kg–1, i.p., 60 min). Enzyme activities of non-synaptic and synaptic mitochondria are different in hippocampus and striatum., confirming that a different metabolic machinery exists in various types of brain mitochondria. During aging, enzyme activities behave quite similarly in both areas. In vivo administration ofl-acetylcarnitine decreased the enzyme activities related to Krebs' cycle mainly of synaptic mitochondria, suggesting a specific subcellular trigger site of action. The drug increased cytochrome oxidase activity of synaptic and non-synaptic mitochondria, indicating the specificity of molecular interaction with this enzyme.  相似文献   

16.
Glutamate metabolism and transport in rat brain mitochondria.   总被引:13,自引:5,他引:8       下载免费PDF全文
1. The metabolism and transport of glutamate and glutamine in rat brain mitochondria of non-synaptic origin has been studied in various states. 2. These mitochondria exhibited glutamate uptake and swelling in iso-osmotic ammonium glutamate, both of which were inhibited by N-ethylmaleimide. 3. The oxidation of glutamate was inhibited by 20% by avenaciolide, but glutamine oxidation was not affected. 4. These mitochondria, when metabolizing glutamine, allowed glutamate, but very little aspartate, to efflux at considerable rates. 5. These results suggests that brain mitochondria of non-synaptic origin possess in addition to a relatively rapid glutamate-aspartate translocase, a relatively slow aspartate-independent glutamate-OH-translocase (cf. liver mitochondria).  相似文献   

17.
1. The specific activities of 4-aminobutyrate aminotransferase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) were significantly higher in brain mitochondria of non-synaptic origin (fraction M) than those derived from the lysis of synaptosomes (fraction SM2). 2. The metabolisms of 4-aminobutyrate in both 'free' (non-synaptic, fraction M) and 'synaptic' (fraction SM2) rat brain mitochondria was studied under various conditions. 3. It is proposed that 4-aminobutyrate enters both types of brain mitochondria by a non-carrier-mediated process. 4. The rate of 4-aminobutyrate metabolism was in all cases higher in the 'free' (fraction M) brain mitochondria than in the synaptic (fraction SM2) mitochondria, paralleling the differences in the specific activities of the 4-aminobutyrate-shunt enzymes. 5. The intramitochondrial concentration of 2-oxoglutarate appears to be an important controlling parameter in the rate of 4-aminobutyrate metabolism, since, although 2-oxoglutarate is required, high concentrations (2.5 mM) of extramitochondrial 2-oxoglutarate inhibit the formation of aspartate via the glutamate-oxaloacetate transaminase. 6. The redox state of the intramitochondrial NAD pool is also important in the control of 4-aminobutyrate metabolism; NADH exhibits competitive inhibition of 4-aminobutyrate metabolism by both mitochondrial populations with an apparent Ki of 102 muM. 7. Increased potassium concentrations stimulate 4-aminobutyrate metabolsim in the synaptic mitochondria but not in 'free' brain mitochondria. This is discussed with respect to the putative transmitter role of 4-aminobutyrate.  相似文献   

18.
Apoptosis may be initiated in neurons via mitochondrial release of the respiratory protein, cytochrome c. The mechanism of cytochrome c release has been studied extensively, but little is known about its dynamics. It has been claimed that release is all-or-none, however, this is not consistent with accumulating evidence of cytosolic mechanisms for 'buffering' cytochrome c. This study has attempted to model an underlying disease pathology, rather than inducing apoptosis directly. The model adopted was diminished activity of the mitochondrial respiratory chain complex I, a recognized feature of Parkinson's disease. Titration of rat brain mitochondrial respiratory function, with the specific complex I inhibitor rotenone, caused proportional release of cytochrome c from isolated synaptic and non-synaptic mitochondria. The mechanism of release was mediated, at least in part, by the mitochondrial outer membrane component Bak and voltage-dependent anion channel rather than non-specific membrane rupture. Furthermore, preliminary data were obtained demonstrating that in primary cortical neurons, titration with rotenone induced cytochrome c release that was subthreshold for the induction of apoptosis. Implications for the therapy of neurodegenerative diseases are discussed.  相似文献   

19.
The activity of cytochrome c oxidase was studied in aging brain on non-synaptic and intra-synaptic mitochondria from frontal cerebral cortex, hippocampus and striatum of 4, 8, 12, 16, 20 and 24 month-old Sprague-Dawley rats. Specific activities of cytochrome oxidase were significantly higher in light synaptic mitochondria than in non-synaptic or heavy ones at all the ages examined. However, enzyme activity in light mitochondria from cerebral cortex remains unchanged during aging, being increased in hippocampus and striatum. These results indicate that aging affected not only the various cerebral area (macroheterogeneity), but also the different mitochondrial populations (subcellular heterogeneity).  相似文献   

20.
Tacrine is an acetylcholinesterase (AChE) inhibitor used as a cognitive enhancer in the treatment of Alzheimer's disease (AD). However, its low therapeutic efficiency and a high incidence of side effects have limited its clinical use. In this study, the molecular mechanisms underlying the impact on brain activity of tacrine and two novel tacrine analogues (T1, T2) were approached by focusing on three aspects: (i) their effects on brain cholinesterase activity; (ii) perturbations on electron transport chain enzymes activities of non-synaptic brain mitochondria; and (iii) the role of mitochondrial lipidome changes induced by these compounds on mitochondrial bioenergetics. Brain effects were evaluated 18 h after the administration of a single dose (75.6 μmol/kg) of tacrine or tacrine analogues. The three compounds promoted a significant reduction in brain AChE and butyrylcholinesterase (BuChE) activities. Additionally, tacrine was shown to be more efficient in brain AChE inhibition than T2 tacrine analogue and less active than T1 tacrine analogue, whereas BuChE inhibition followed the order: T1 > T2 > tacrine. The studies using non-synaptic brain mitochondria show that all the compounds studied disturbed brain mitochondrial bioenergetics mainly via the inhibition of complex I activity. Furthermore, the activity of complex IV is also affected by tacrine and T1 treatments while FoF(1) -ATPase is only affected by tacrine. Therefore, the compounds' toxicity as regards brain mitochondria, which follows the order: tacrine > T1 > T2, does not correlate with their ability to inhibit brain cholinesterase enzymes. Lipidomics approaches show that phosphatidylethanolamine (PE) is the most abundant phospholipids (PL) class in non-synaptic brain mitochondria and cardiolipin (CL) present the greatest diversity of molecular species. Tacrine induced significant perturbations in the mitochondrial PL profile, which were detected by means of changes in the relative abundance of phosphatidylcholine (PC), PE, phosphatidylinositol (PI) and CL and by the presence of oxidized phosphatidylserines. Additionally, in both the T1 and T2 groups, the lipid content and molecular composition of brain mitochondria PL are perturbed to a lesser extent than in the tacrine group. Abnormalities in CL content and the amount of oxidized phosphatidylserines were associated with significant reductions in mitochondrial enzymes activities, mainly complex I. These results indicate that tacrine and its analogues impair mitochondrial function and bioenergetics, thus compromising the activity of brain cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号