首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The e.p.r. signals attributable to a cytochrome bd-type ubiquinol:O2 oxidoreductase (cytochrome b-558-b-595-d) were studied in a cytoplasmic membrane preparation of Escherichia coli that had been grown on glycerol with fumarate as respiratory-chain oxidant. Two major high-spin ferric haem signals were resolved on the basis of their potentiometric behaviour: a rhombic high-spin species (gx = 6.25, gy = 5.54) was assigned to haem b-595, and an axial high-spin (gx = 5.97, gy = 5.96) species was assigned to the haem d. These signals titrated with Em.7 values of 154 and 261 mV respectively, corresponding closely to optically determined values for haem b-595 and haem d. At high potentials (greater than 300 mV) the rhombic species attributable to haem b-595 underwent a partial transition to a second rhombic species with g-values of 6.24 (gx) and 5.67 (gy). The high-spin ferric haem spectra were affected by O2, CO, cyanide and pH. A low-spin ferric haem signal was observed at g = 3.3 (gz), which titrated with an Em.7 of 226 mV, and this was assigned to haem b-558. The data support a model for cytochrome bd with two ligand-binding sites, a single haem d and a single haem b-595.  相似文献   

2.
The EPR spectra of cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodopseudomonas sphaeroides were measured at liquid helium temperature. The purified cytochrome b-562 gives a high spin signal at g = 6.0. Anaerobic titration of this signal confirmed the presence of two redox components with Em = 40 and -110 mV at pH 7.5. These values are consistent with the published ones, Em = 55 and -100 mV at pH 7.0, that were optically estimated for the same type of preparation (Iba et al. (1985) FEBS Lett. 183, 151-154). The power saturation behavior of the g = 6.0 signal at different redox potentials indicated a direct spin-spin interaction between these two redox centers.  相似文献   

3.
The ESR signals of the cytochromes in the Escherichia coli terminal oxidase cytochrome d complex were studied at cryogenic temperature. The intensities and g values of the rhombic high-spin signals changed when the electronic state of cytochrome d was changed from the oxidized state to the reduced or oxygen-binding or CO-binding state. These rhombic signals were therefore assigned to cytochrome b-595, which is located near cytochrome d in the oxidase complex. This assignment was supported by the finding that the Em value of the rhombic signals differed from that of cytochrome d (Hata, A. et al. (1985) Biochim. Biophys. Acta 810, 62-72). Photolysis and ligand-exchange experiments with the reduced CO complex of the oxidase were performed in the presence of oxygen at -140 degrees C. The ESR spectra of three intermediate forms trapped by controlled low temperatures were detected. These forms were designated as the oxygen-binding intermediate I (ESR-silent), oxygen-binding intermediate II (giving ESR signals at g = 6.3, 5.5 and 2.15), and oxygen-binding intermediate III (giving signals at g = 6.3, 5.5 and 6.0). From these results, electron flow in the cytochrome d complex is proposed to proceed in the order, cytochrome b-558----cytochrome b-595----cytochrome d----O2. A model of the mechanism of four-electron chemistry for oxidation of ubiquinol-8 and formation of H2O by the cytochrome d complex is presented.  相似文献   

4.
The physicochemical properties of the iron-sulfur clusters present in the NADH:ubiquinone oxidoreductase of Paracoccus denitrificans have been examined in the cytoplasmic membrane particles by redox potentiometry and EPR spectroscopy. Analogous to the iron-sulfur clusters present in the mitochondrial NADH: ubiquinone oxidoreductase, we have found two binuclear and three tetranuclear EPR detectable iron-sulfur clusters, namely, N-1a, N-1b, N-2, N-3, and N-4. In the bacterial system, the two binuclear clusters differ in line shape and in Em values; the cluster with more rhombic symmetry (gx,y,z = 1.918, 1.937, 2.029) has the Em7.0 value of -150 while the almost axial one (gx,y,z = 1.929, 1.941, 2.019) has Em7.0 of -270 mV. The Em of the former cluster is pH dependent (-60 mV/pH) as in the case of mammalian N-1a while the latter is pH independent as is the mammalian cluster N-1b. The pH-dependent P. denitrificans [2Fe-2S] cluster, which we have labeled N-1a, has an Em7.0 as high as that of N-2, in contrast to the mammalian N-1a. Thus N-1a is reducible with a physiological reductant, NADH in this bacterial system. The Em of the cluster N-2 is also pH dependent (Em7.0 = -130 mV) with a pK value near 7.7. The Em values of all other clusters exhibit no pH dependence as in the case of their mammalian counterparts. We have found that the cluster N-1a is the most labile component among the five iron-sulfur clusters and may give rise to variable relative spin concentrations and extremely low Em values due to the facile modifications of the microenvironment of the cluster. The P. denitrificans NADH:ubiquinone oxidoreductase provides a unique and useful site I model system where redox composition is similar to the mitochondrial enzyme but with fewer numbers of polypeptides (Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311).  相似文献   

5.
The dinitrogenase component proteins of the conventional Mo nitrogenase (MoFe protein) and of the alternative Fe-only nitrogenase (FeFe protein) were both isolated and purified from Rhodobacter capsulatus, redox-titrated according to the same procedures and subjected to an EPR spectroscopic comparison. In the course of an oxidative titration of the MoFe protein (Rc1Mo) three significant S = 1/2 EPR signals deriving from oxidized states of the P-cluster were detected: (1) a rhombic signal (g = 2.07, 1.96 and 1.83), which showed a bell-shaped redox curve with midpoint potentials (Em) of -195 mV (appearance) and -30 mV (disappearance), (2) an axial signal (g(parallel) = 2.00, g perpendicular = 1.90) with almost identical redox properties and (3) a second rhombic signal (g = 2.03, 2.00, 1.90) at higher redox potentials (> 100 mV). While the 'low-potential' rhombic signal and the axial signal have been both attributed to the one-electron-oxidized P-cluster (P1+) present in two conformationally different proteins, the 'high-potential' rhombic signal has been suggested rather to derive from the P3+ state. Upon oxidation, the FeFe protein (Rc1Fe) exhibited three significant S = 1/2 EPR signals as well. However, the Rc1Fe signals strongly deviated from the MoFe protein signals, suggesting that they cannot simply be assigned to different P-cluster states. (a) The most prominent feature is an unusually broad signal at g = 2.27 and 2.06, which proved to be fully reversible and to correlate with catalytic activity. The cluster giving rise to this signal appears to be involved in the transfer of two electrons. The midpoint potentials determined were: -80 mV (appearance) and 70 mV (disappearance). (b) Under weakly acidic conditions (pH 6.4) a slightly altered EPR signal occurred. It was characterized by a shift of the g values to 2.22 and 2.05 and by the appearance of an additional negative absorption-shaped peak at g = 1.86. (c) A very narrow rhombic EPR signal at g = 2.00, 1.98 and 1.96 appeared at positive redox potentials (Em = 80 mV, intensity maximum at 160 mV). Another novel S = 1/2 signal at g = 1.96, 1.92 and 1.77 was observed on further, enzymatic reduction of the dithionite-reduced state of Rc1Fe with the dinitrogenase reductase component (Rc2Fe) of the same enzyme system (turnover conditions in the presence of N2 and ATP). When the Rc1Mo protein was treated analogously, neither this 'turnover signal' nor any other S = 1/2 signal were detectable. All Rc1Fe-specific EPR signals detected are discussed and tentatively assigned with special consideration of the reference spectra obtained from Rc1Mo preparations.  相似文献   

6.
The oxidation-reduction midpoint potential of the cytochrome b found in the plasma membrane of human neutrophils has been determined at pH 7.0 (Em,7.0) from measurements of absorption spectra at fixed potentials. In both unstimulated and phorbol myristate acetate-stimulated cells Em,7.0 was -245 mV. Changes in pH affected the Em of the cytochrome b, with a slope of approx. 25 mV/pH unit change. The Em,7.0 of the haem group(s) of the membrane-bound myeloperoxidase of human neutrophils was found to be +34 mV. The plasma membranes contained no detectable ubiquinone, and no iron-sulphur compounds were detected by e.p.r. spectroscopy at 5-20 K. No flavins were detected by e.p.r. spectroscopy. The cytochrome b-245 was not reduced by added NADH or NADPH. Dithionite-reduced cytochrome b-245 formed a complex with CO, supplied as a saturated solution, which was dissociated with 26 microseconds illumination from a xenon flash lamp, and the recombination with CO had a half-time of approx. 6 ms. Partly (80%) reduced cytochrome b-245 was oxidized by added air-saturated buffer with a half-time faster than 1 s at 20 degrees C, a resolution limited by mixing time. These results are compatible with cytochrome b-245 acting as an oxidase.  相似文献   

7.
L C Dickinson  J C Chien 《Biochemistry》1975,14(16):3526-3534
An improved procedure for the preparation of cobalt-cytochrome c has been developed. Various factors influencing the cobalt insertion process are discussed. The optical spectra of cobalt-cytochrome c suggest a six-coordinated species. The spectral shifts occurring with oxidation-reduction are compared with those observed for deoxy-cobaltohemoglobin and ferrocytochrome c and attributed to the effect of d(z2) electron on stereoelectronic interactions between the axial ligands and the porphyrin pi systems. Cobalt-cytochrome c has Em,7 = -140 +/- 20 mV as compared to an Em,7 of +250mV for ferrocytochrome c. An explanation for this negative Em,7 is offered. Cobaltocytochrome c is oxidized by cytochrome oxidase at about 45% of the rate for native cytochrome c. On the other hand cobalticytochrome c was not reduced by microsomal NADH or NADPH cytochrome c reductase nor by mitochondrial NADH or succinate cytochrome c reductase. It appears that the integrity of the reductase binding site is destroyed and the oxidase binding site has been modified by cobalt substitution.  相似文献   

8.
The cytochrome-bo quinol oxidase of Escherichia coli contains a high-spin b-type heme (cytochrome o), a low-spin b-type heme (cytochrome b) and copper. The EPR signal from cytochrome o is axial high spin and when titrated potentiometrically gives a bell-shaped curve. The low-potential side of this curve (Em7 approx. 160 mV) corresponds to the reduction/oxidation of the cytochrome. The high-potential side (Em7 approx. 350 mV) is proposed to be due to reduction/oxidation of a copper center; in the CuII form tight cytochrome o-copper spin coupling results in a net even spin system and loss of the EPR spectrum. Optical spectra of the alpha-bands of the reduced cytochromes at 77 K show that cytochrome b has its maxima at 564 nm when cytochrome o is oxidized but that this shifts to 561 nm when cytochrome o (max. 555 nm) is reduced. Both a heme-copper (cytochrome o-CuII) and a heme-heme (cytochrome o-cytochrome b) interaction are indicated in this quinol oxidase. These results indicate that cytochrome-bo quinol oxidase has a binuclear heme-copper catalytic site and suggest striking structural similarity to subunit I of the cytochrome aa3 system.  相似文献   

9.
Assignment of ESR signals of Escherichia coli terminal oxidase complexes   总被引:1,自引:0,他引:1  
The ESR signals of all the major components of the aerobic respiratory chain of Escherichia coli were measured and assigned at liquid helium temperature. Cytochrome b-556 gives a weak high-spin signal at g = 6.0. The terminal oxidase cytochrome b-562 . o complex gives signals at g = 6.0, 3.0 and 2.26, and the terminal oxidase cytochrome b-558 . d complex gives signals at g = 6.0, 2.5 and 2.3. A signal derived from cupric ions in the purified cytochrome b-562 . o complex was observed near g = 2.0. It was shown by the effects of KCN or NaN3 on cytochromes under the air-oxidized conditions that cytochrome o has a high-spin heme and cytochrome d has a low-spin heme. The E'm values for cytochromes b-558 and d, respectively, determined by potentiometric titration of the ESR signals were 140 and 240 mV in the membrane preparation, and 30 and 240 mV in the purified preparation. The oxidized cytochrome d gave intense low-spin signals at g = 2.5 and 2.3, while cytochrome d under the air-oxidized conditions gave corresponding signals of only very low intensity. These results suggested that most of the cytochrome d under the air-oxidized conditions contains a diamagnetic iron atom with a bound dioxygen.  相似文献   

10.
Cytochrome bd-type ubiquinol oxidase contains two hemes b (b(558) and b(595)) and one heme d as the redox metal centers. To clarify the structure of the reaction center, we analyzed Escherichia coli cytochrome bd by visible absorption, EPR and FTIR spectroscopies using azide and cyanide as monitoring probes for the exogenous ligand binding site. Azide-binding caused the appearance of a new EPR low-spin signal characteristic of ferric iron-chlorin-azide species and a new visible absorption band at 647 nm. However, the bound azide ((14)N(3)) anti-symmetric stretching infrared band (2, 010.5 cm(-1)) showed anomalies upon (15)N-substitutions, indicating interactions with surrounding protein residues or heme b(595) in close proximity. The spectral changes upon cyanide-binding in the visible region were typical of those observed for ferric iron-chlorin species with diol substituents in macrocycles. However, we found no indication of a low-spin EPR signal corresponding to the ferric iron-chlorin-cyanide complexes. Instead, derivative-shaped signals at g = 3.19 and g = 7.15, which could arise from the heme d(Fe(3+))-CN-heme b(595)(Fe(3+)) moiety, were observed. Further, after the addition of cyanide, a part of ferric heme d showed the rhombic high-spin signal that coexisted with the g(z) = 2.85 signal ascribed to the minor heme b(595)-CN species. This indicates strong steric hindrance of cyanide-binding to ferric heme d with the bound cyanide at ferric heme b(595).  相似文献   

11.
The heterodimeric hemoprotein SoxXA, essential for lithotrophic sulfur oxidation of the aerobic bacterium Paracoccus pantotrophus, was examined by a combination of spectroelectrochemistry and EPR spectroscopy. The EPR spectra for SoxXA showed contributions from three paramagnetic heme iron centers. One highly anisotropic low-spin (HALS) species (gmax = 3.45) and two "standard" cytochrome-like low-spin heme species with closely spaced g-tensor values were identified, LS1 (gz = 2.54, gy = 2.30, and gx = 1.87) and LS2 (gz = 2.43, gy = 2.26, and gx = 1.90). The crystal structure of SoxXA from P. pantotrophus confirmed the presence of three heme groups, one of which (heme 3) has a His/Met axial coordination and is located on the SoxX subunit [Dambe et al. (2005) J. Struct. Biol. 152, 229-234]. This heme was assigned to the HALS species in the EPR spectra of the isolated SoxX subunit. The LS1 and LS2 species were associated with heme 1 and heme 2 located on the SoxA subunit, both of which have EPR parameters characteristic for an axial His/thiolate coordination. Using thin-layer spectroelectrochemistry the midpoint potentials of heme 3 and heme 2 were determined: Em3 = +189 +/- 15 mV and Em2 = -432 +/- 15 mV (vs NHE, pH 7.0). Heme 1 was not reducible even with 20 mM titanium(III) citrate. The Em2 midpoint potential turned out to be pH dependent. It is proposed that heme 2 participates in the catalysis and that the cysteine persulfide ligation leads to the unusually low redox potential (-436 mV). The pH dependence of its redox potential may be due to (de)protonation of the Arg247 residue located in the active site.  相似文献   

12.
Baker's yeast mitochondrial cytochrome b-564 is characterized by exhibiting both a labile pH-independent high-potential form (E'o, pH 7 = + 190 mV) and a stable pH-dependent (pKa = 6.8) low-potential form (E'o, pH 7 = + 70 mV). The different behavior of these two forms of cytochrome b-564 versus pH seems to be a decisive factor for transduction of redox energy into acid-base energy in oxidative phosphorylation site 2. Deenergizing treatments, such as ADP plus Pi, result in the conversion of all the mitochondrial cytochrome b-564 into its low-potential form, whereas energization with ATP specifically transforms the cytochrome into its high-potential form, the ATP effect being neutralized by the ATPase inhibitor oligomycin and by the uncoupler FCCP. Accordingly, a minimal model for coupling between redox energy and acid-base energy through an electronically energized and protonated ferricytochrome b-564 intermediate is proposed. The energy-transducing properties of mitochondrial cytochrome b-564 seems to be shared by chloroplast cytochrome b-559.  相似文献   

13.
Hydrogenase I (bidirectional) and hydrogenase II (uptake) of Clostridium pasteurianum have been investigated by electron paramagnetic resonance (EPR) spectroscopy, in the presence and absence of the inhibitor, CO. These hydrogenases contain both a novel type of iron-sulfur cluster (H), which is the proposed site of H2 catalysis, and ferredoxin-type [4Fe-4S] clusters (F). The results show that the H clusters of these two hydrogenases have very different properties. The H cluster of oxidized hydrogenase II (Hox-II) exhibits three distinct EPR signals, two of which are pH-dependent. Hox-II binds CO reversibly to give a single, pH-independent species with a novel, rhombic EPR spectrum. The H cluster of reduced hydrogenase II (Hred-II) does not react with CO. In contrast, the EPR spectrum of Hox-I appears homogeneous and independent of pH. Hox-I has a much lower affinity for CO than Hox-II, and binds CO irreversibly to give an axial EPR signal. Hred-I also binds CO irreversibly. The EPR spectra of Fred-I and Fred-II show little or no change after CO treatment. Prior exposure to CO does not affect the catalytic activity of the reduced or oxidized hydrogenases when assayed in the absence of CO, but both enzymes are irreversibly inactivated if CO is present during catalysis. Mechanisms for H2 activation by hydrogenase I and hydrogenase II are proposed from the determined midpoint potentials (Em, pH 8.0) of H-I and H-II (Em approximately -400 mV, -CO; approximately -360 mV, +CO), F-I (Em = -420 mV, +/- CO), and F-II (Em = -180 mV, +/- CO). These allow one to rationalize the different modes of CO binding to the two hydrogenases and suggest why hydrogenase II preferentially catalyzes H2 oxidation. The results are discussed in light of recent spectroscopic data on the structures of the two H clusters.  相似文献   

14.
A simple system is presented for the microscale, direct voltammetry of redox proteins, typically 25 micrograms, in the absence of mediators and/or modifiers. The sample consists of a droplet of anaerobic solution laid onto an oversized disc of nitric-acid-pretreated glassy carbon as the working electrode. Very reproducible, Nernstian responses are obtained with horse heart cytochrome c. The midpoint potential Em (pH 7.0) is dependent on the ionic strength, ranging from $293 mV in 1 mM potassium phosphate to $266 mV in 0.1 M phosphate. At fixed buffer and cytochrome concentrations the magnitude of the voltammetric response is found to be independent of pH over six pH units around neutrality. It is suggested that the response of the present system is not complicated by pH-dependent properties of the electrode surface around physiological pH and, therefore, that the use of this system is practical in biochemically oriented studies. Direct, quasi-reversible responses have also been obtained at pH 7.0 (5 mM phosphate) from Desulfovibrio vulgaris. Hildenborough strain, tetraheme cytochrome c3 (pI = 10.0 at 4 C; 3 X Em = -0.32 mV, Em = -0.26 V), and cytochrome c553 (pI = 9.3; Em = +60 mV), and from Megasphaera elsdenii rubredoxin (pI congruent to 3; Em = -353 mV). The latter protein absorbs onto the glassy carbon surface, thus forming a system with possible applications in the electrochemical study of ferredoxin-linked enzymes.  相似文献   

15.
We have previously described a transient high spin ferric heme species in cytochrome c oxidase (EC 1.9.3.1) which represent a3+(3) (Beinert, H. and Shaw, R.W.(1977) Biochim. Biophys. Acta 462, 12u--130), and can be detected and quantitatively determined by EPR. We have now used out ability to generate this species to study reactions of a3+(3) with substrates and ligands and also responses to pH changes. This was accomplished by multiple rapid mixing and freezing techniques in conjunction with low temperature EPR and optical reflectance spectroscopies. The substrates used were O2 and ferrocytochrome c and the ligands cyanide, sulfide, azide and carbon monoxide. Contrary to the oxidized, resting form of the enzyme, the transient high spin species of a3+(3) reacts within less than 10 ms stoichiometrically with cyanide and sulfide and at a slower rate with azide. The transient a3+(3) species responds to O2 and CO by changes in signal size or shape, although no oxidoreduction is involved, indicating that a3+(3) registers the presence of these gases. The high spin signal of the transient species is readily abolished by ferrocytochrome c or on raising the pH. Decreasing the pH induces a shift from the rhombic towards the axial component of the signal. Since the responses to CO and pH are analogous for the rhombic transient species to those observed with the rhombic high spin ferric heme species produced on partial reduction, it is suggested that the rhombic signals represent a3+(3) in either case. In all these experiments, in which EPR detectable a3+(3) was observed in large yield, no extra signals for copper or correspondingly increased intensity in the copper signal at g = 2 were seen. The relationship is discussed of the obviously reactive transient species of a3+(3) to other 'activated' species that have been reported and to the oxidized resting form of the enzyme, which is known to react only slowly with ligands and to respond sluggishly to substrate.  相似文献   

16.
The cytochromes in microsomal fractions of germinating mung beans.   总被引:11,自引:1,他引:10       下载免费PDF全文
Detailed studies of microsomal cytochromes from mung-bean radicles showed the presence of cytochrome P-420, particularly in dark-grown seedlings, accompanied by smaller quantities of cytochrome P-450. Similar proportions of cytochrome P-420 to cytochrome P-450 were found spectrophotometrically in vivo with whole radicles and hypocotyls. Assayed in vitro, maximum concentrations of both cytochromes were attained after 4 days of growth, before undergoing rapid degradation. Illumination of seedlings stabilized cytochrome P-450 and decreased the amount of cytochrome P-420. Three b cytochromes were present in the microsomal fraction, namely cytochromes b-562.5 (Em + 105 +/- 23 mV), b-560.5 (Em + 49 +/- 13 mV) and b5 (Em - 45 +/- 14 mV), all at pH 7.0. Of the b cytochromes, cytochrome b5 alone undergoes a rapid degradation after day 4, Changes in cytochrome b concentrations were confined to the microsomal fraction: mitochondrial b cytochrome concentrations were unaltered with age. Protohaem degradation (of exogenous methaemalbumin) was detected in microsomal fractions of mung beans. The rates of degradation were highest in extracts of young tissue and declined after day 4. The degradation mechanism and products did not resemble those of mammalian haem oxygenase.  相似文献   

17.
Myeloperoxidase was purified from human polymorphonuclear leukocytes and the effect of chloride upon the EPR and potentiometric properties was studied. The redox titration between the ferrous and ferric states of the enzyme yielded n = 1 Nernst plots between pH 9 and 4, with clear isosbestic points in the optical spectra during the redox change. The midpoint potential (Em) between the ferric and ferrous forms of the enzyme exhibited a pH-dependent change between pH 4 and 9, and the effect of added chloride ion indicated that Cl- competed with OH- for a binding site on the enzyme. Interestingly, the pH dependence of the Em indicated that the overall redox reactions of the enzyme was: ferric myeloperoxidase + 2e- + 1H+ = ferrous myeloperoxidase. Myeloperoxidase exhibited a rhombic high spin EPR signal which exhibited reduced rhombicity upon the binding of chloride. Our results strongly suggest that chloride binds to the sixth coordination position of the chlorin iron in myeloperoxidase by replacing the water which is the sixth ligand in the resting state. It is also concluded that the two iron centers are identical and that there is no interaction between them.  相似文献   

18.
The cytochrome bo quinol oxidase of Escherichia coli is one of two respiratory O2 reductases which the bacterium synthesizes. The enzyme complex contains copper and 2 mol of b-type heme. Electron paramagnetic resonance (epr) spectroscopy of membranes from a strain having amplified levels of this enzyme complex reveals signals from low- and high-spin b-type hemes, but the copper, now established as a component of the oxidase, is not directly detectable by epr. The high-spin signal from the cytochrome bo complex, which we attribute to cytochrome o, when titrated potentiometrically, gives a bell-shaped curve. The low potential side of this curve is biphasic (Em7 approximately 180 and 280 mV) and corresponds to the reduction/oxidation of the cytochrome(s). The high potential side of the bell-shaped curve is monophasic (Em7 approximately 370 mV) and is proposed to be due to reduction/oxidation of a copper center which, when in the Cu(II) form, is tightly spin-coupled to a heme, probably cytochrome o, resulting in a net even spin system and loss of the epr spectrum. The low-spin cytochrome b titrates biphasically with Em7 values of approximately 180 and 280 mV, similar to the high-spin component but without the loss of signal at high potentials.  相似文献   

19.
The amplitude of the slow phase of the electrochromic bandshift and the dark redox state of cytochrome b6, as well as its flash-induced turnover, have been measured as a function of ambient redox potential between +200 and -200 mV. Formation of a quinol-like donor with an Em,7 = +100 +/- 10 mV is required for generation of the slow phase. 80-100% of the amplitude of this signal with a t 1/2 = 3-4 ms is observed at -200 mV where cytochrome b6 was almost fully reduced (Em,7 of dark and flash-induced photoreduction was -30 mV and -75 mV, respectively). The change in the photoreduction of cytochrome b6 above 0 mV had an Em,7 of +50 mV, about 50 mV more negative than the midpoint at this pH for the onset of the slow electrochromic change. At potentials below -140 mV the amplitude of b6 photoreduction becomes small or negligible. The nature of the cytochrome b6 photoresponse is changed at potentials below -140 mV from a net photoreduction with a t1/2 = approximately less than 1 ms to a photooxidation with a t1/2 = 15-20 ms that is substantially slower than the electrochromic band-shift with a t1/2 = 3-4 ms. It is concluded that the slow electrochromic phase probably does not arise from a mechanism involving a turnover of cytochrome b6. From consideration of the possible flash-induced electron-transfer steps and alternative mechanisms for generation of the slow phase, it is suggested that it may arise from a redox-linked H+ pump involving the high potential iron-sulfur protein.  相似文献   

20.
Formate dehydrogenase from Methanobacterium formicicum was examined by electron paramagnetic resonance spectroscopy. Although oxidized enzyme yielded no EPR signals over the temperature range 8-200 K, dithionite reduction resulted in generation of two paramagnetic components. The first, a nearly isotropic signal visible at temperatures below 200 K with g1 = 2.018, g2 = 2.003, and g3 = 1.994, exhibited nuclear hyperfine interaction with two equivalent protons (A1 = 0.45, A2 = 0.6, and A3 = 0.55 milliTeslas). EPR spectra of partially reduced 95Mo-enriched formate dehydrogenase exhibited additional 3-4 milliTeslas splittings, due to spin interaction with the 95Mo nucleus. Thus, this signal is due to a Mo center. This is the first reported example of a Mo center with gav greater than 2.0 in a biological system. The second species, a rhombic signal visible below 40 K with g values of g1 = 2.0465, g2 = 1.9482, and g3 = 1.9111 showed no hyperfine coupling and was assigned to reduced Fe/S. Both paramagnetic species could be detected in samples of M. formicicum whole cells anaerobically reduced with sodium formate. The Mo(V) signal was altered following addition of cyanide (g1 = 1.996, g2 = 1.988, and g3 = 1.980). Growth of bacteria in the presence of 1 mM WO4(2-) resulted in abolition of the Mo(V) EPR signal and formate dehydrogenase activity. Em, 7.7 was -330 mV for Mo(VI)/Mo(V) and -470 mV for Mo(V)/Mo(IV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号