首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钱芳 《生物学杂志》2003,20(6):8-10,7
干细胞是目前细胞工程研究最活跃的领域,通过对各种干细胞的界定,胚胎干细胞和成体干细胞的比较研究、以及干细胞的技术应用,揭示出干细胞尤其是胚胎干细胞在医学以及整个生命科学中的巨大潜势,乃至于引发医学领域的重大变革。  相似文献   

2.
State and national research policies governing human embryonic stem cell science are affecting the career plans of scientists in this exciting but controversial field.  相似文献   

3.
4.
Embryonic developmental stages and regulations have always been one of the most intriguing aspects of science. Since the cancer stem cell discovery, striking for cancer development and recurrence, embryonic stem cells and control mechanisms, as well as cancer cells and cancer stem cell control mechanisms become important research materials. It is necessary to reveal the similarities and differences between somatic and cancer cells which are formed of embryonic stem cells divisions and determinations. For this purpose, mouse embryonic stem cells (mESCs), mouse skin fibroblast cells (MSFs) and mouse lung squamous cancer cells (SqLCCs) were grown in vitro and the differences between these three cell lines signalling regulations of mechanistic target of rapamycin (mTOR) and autophagic pathways were demonstrated by immunofluorescence and real-time polymerase chain reaction. Expressional differences were clearly shown between embryonic, cancer and somatic cells that mESCs displayed higher expressional level of Atg10, Hdac1 and Cln3 which are related with autophagic regulation and Hsp4, Prkca, Rhoa and ribosomal S6 genes related with mTOR activity. LC3 and mTOR protein levels were lower in mESCs than MSFs. Thus, the mechanisms of embryonic stem cell regulation results in the formation of somatic tissues whereas that these cells may be the causative agents of cancer in any deterioration.  相似文献   

5.
Mammalian embryonic stem cells have the potential to differentiate into all cell types of an adult individual. The culturing of human embryonic stem cells renders possible studies that were previously only available in animal models. Embryonic stem cells constitute a particularly attractive tool for studies of self-renewal, commitment, differentiation, maturation and cell-cell interaction. There is currently considerable hope that studies of embryonic stem cells will lead to new therapies; either by themselves, through cell replacement strategies, or by generating results assisting other fields of research to reach clinical results. There are, however, considerable challenges to be met before embryonic stem cells can be used in large-scale clinical trials.Stem cell research is an area that has given rise to much debate internationally, within science, law and politics as well as within philosophy and ethics. The ethical attitudes expressed in the public debate over stem cell research notably divide over three important distinctions: (1) Reproductive versus therapeutic cloning; (2) Using already existing embryos versus producing new embryos for research purposes; (3) Production of embryos from eggs and sperm versus through somatic-cell nuclear transfer. The potential medical benefits that may result from embryonic stem cell research arguably support a continued development in this area. However, some opponents argue that this research offends the (relative or absolute) moral status of an unborn human. Furthermore, the research would probably prove to be a both time-consuming and very expensive method for treating disease. Thus, the questions arise whom the new technique wouldbenefit and at what cost, if ever developed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Introduction     
Abstrat

In this paper we discuss genetic discourses and practices in stem cell science. We report on how biomedical scientists, in both the UK and the USA, view the scientific literature and their own experimental research in the emerging field of human embryonic stem (hES) cells. We focus on the genetic manipulation of stem cells to make specialized (beta) cells as a potential cure for diabetes. We draw on Gieryn's notion of boundary work as an analytical motif, and suggest this is a productive way to theorize boundary crossings in the shifting landscapes of expectations in the field of new medical technologies. We argue that initial expectations of a revolution in regenerative medicine have been damped down by the difficulties of making insulin producing pancreatic beta cells from stem cells. We contend the consequent shifts in expectations have led to the emergence of other more radical experimental strategies (such as using oncogenes) in the search for potential cures for Type 1 diabetes. In conclusion, we argue that regenerative medicine is a fruitful example of the shaping of contested biomedical landscapes and we contend that embryonic stem cells are a productive case study of the interactions between genetics, science and society.  相似文献   

7.
Gross M 《Current biology : CB》2004,14(15):R592-R593
With many of the leading science nations still stuck in debates on the use of embryonic stem cells, Britain, with a regulatory framework in place, is well-positioned to take the lead. Michael Gross reports.  相似文献   

8.
鸡作为优秀的模式动物在生命科学研究中的作用日益受到人们重视,其中以鸡胚胎的贡献尤为突出。本文简要综述了鸡胚胎在发育生物学、肿瘤、再生、神经生物学和胚胎干细胞等研究领域中的应用,同时对鸡基因组和鸡胚胎的研究方法也进行了简单探讨。  相似文献   

9.
We analyzed embryonic stem cell lines for their capacity to produce aggregation chimeras with diploid or developmentally compromised tetraploid embryos. Descendants of embryonic stem cells which contributed to midgestation fetuses at high levels were capable of supporting fetal development also with tetraploid partners. Different numbers of embryonic stem cells were introduced into diploid and tetraploid morulae as well as into blastocysts by microinjection. There were no differences in the frequency of embryonic stem cell-containing fetuses when comparing aggregation or injection into morulae versus blastocysts. However, the distribution pattern of embryonic stem cell derivatives in chimeric fetuses suggested that pre-compaction embryos are more suitable for generating fetuses with high embryonic stem cell contribution. Injection of embryonic stem cells into tetraploid embryos showed that completely embryonic stem cell-derived fetuses can also be produced by this technique. Totally embryonic stem cell derived fetuses were observed in each group, when embryonic stem cells were injected into diploid embryos. However, the rate of chimeras and chimerism was lower when 1 or 3 embryonic stem cells were used versus 8 or 15 cells. This suggests that the number of embryonic stem cells introduced might play a role in the colonization ability.  相似文献   

10.
Stem cell biology is one of the most exciting, controversial, and debated fields in science today. It has been suggested that neuronal replacement therapy using stem cell transplants may be one possible answer to a host of neuropathological disorders including spinal cord injury, stroke, and neurodegenerative diseases. Important sources for stem cells include the developing embryo and adult central nervous system, but will these populations of cells exhibit similar behavior and responses to stimuli? This review will discuss some important similarities and differences between the embryonic and adult stem cell, as well as the basis for developing therapeutic approaches for stem cell replacement.  相似文献   

11.
Establishment of human embryonic stem cell lines is one the major achievements in the biological science in the XX century and has excited a wide scientific and social response as embryonic stem cells can be regarded in future as unlimited source of transplantation materials for the replacement cell therapy. To date human embryonic cell lines are obtained in more than 20 countries. In our country the embryonic stem cell researches are carried out in the Institute of Cytology RAS and the Institute of Gene Biology RAS. ESC lines are derived from placed in culture inner cell mass of human preimplantation blastocysts used in the in vitro fertilization procedure. Studies with human ESC go in several directions. Much attention is paid to the elaboration of the optimal conditions for ESC cultivation, mainly to the development of cultivation methods excluding animal feeder cells and other components of animal origin. Another direction is a scale analysis of gene expression specific for the embryonic state of the cells and corresponding signaling pathways. Many efforts are concentrated to find conditions for the directed differentiation of ESC into different tissue-specific cells. It has been shown that ESC are able to differentiate in vitro practically into any somatic cells. Some works are initiated to develop methods for the "therapeutic cloning", that is transfer and reactivation of somatic nuclei into enucleated oocytes or embryonic stem cell cytoblasts. Of great importance is human ESC line standardization. However, the standard requirements for the cells projected for research or therapeutic purposes may be different. It has been found that many permanent human ESC lines undergo genetic and epigenetic changes and, therefore, the cell line genetic stability should be periodically verified. The main aim of the review presented is a detailed consideration of the works analyzing the genetic stability of human and mouse ESC lines. Human ESC lines established in our and as well as in other countries couldn't be used so far in clinical practice. It is highly probable that undifferentiated ESC cannot be applied for therapeutic purposes because of the risk of their malignant transformation. Therefore, main efforts should be focused on the production of progenitor and highly differentiated cells suitable for transplantation derived from ESC.  相似文献   

12.
小鼠胚胎干细胞建系技术研究进展   总被引:4,自引:0,他引:4  
目前,对小鼠胚胎干细胞的研究较为深入,并已成为研究细胞分化及信号转导、新基因发现及功能鉴定、器官发生、人类疾病和药物开发等的有效手段。胚胎干细胞建系是一项基础性工作。虽然技术日趋成熟,有些品系小鼠的胚胎干细胞建系已是常规技术,但不同品系小鼠胚胎干细胞的建系效率仍有很大差异,建系途径和方法各有特点,一个品系胚胎干细胞的建系方法不一定都适用于其他品系。本文从小鼠胚胎干细胞建系的途径、分离操作技术、培养体系等方面进行综述,并就与之相关的有些问题提出思考和对策。  相似文献   

13.
Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells.  相似文献   

14.
人胚胎干细胞建系和鉴定   总被引:1,自引:0,他引:1  
孙博文 《生命科学》2003,15(4):207-210
人胚胎干细胞是一种取自人囊胚内细胞团且具有形成所有三个胚层细胞能力的全能细胞。建立一个理想的人胚胎干细胞培养系统是研究和利用这种具有巨大潜力细胞的首要条件。本文讨论了目前建立的人胚胎干细胞培养系统,阐述了其有利的和不利的一面,并着重讨论其体外培养方法和鉴定策略。  相似文献   

15.
Stem cells (SCs) are classes of undifferentiated biological cells existing only at the embryonic, fetal, and adult stages that can divide to produce specialized cell types during fetal development and remain in our bodies throughout life. The progression of regenerative and reproductive medicine owes the advancement of respective in vitro and in vivo biological science on the stem cell nature under appropriate conditions. The SCs are promising therapeutic tools to treat currently of infertility because of wide sources and high potency to differentiate. Nevertheless, no effective remedies are available to deal with severe infertility due to congenital or gonadotoxic stem cell deficiency in prepubertal childhood. Some recent solutions have been developed to address the severe fertility problems, including in vitro formation of germ cells from stem cells, induction of pluripotency from somatic cells, and production of patient‐specific pluripotent stem cells. There is a possibility of fertility restoration using the in vitro formation of germ cells from somatic cells. Accordingly, the present review aimed at studying the literature published on the medical application of stem cells in reproductive concerns.  相似文献   

16.
哺乳动物的早期胚胎发育和干细胞多能性由转录因子构成的基因网络所调控。2003年,在胚胎干细胞中发现的重要转录因子NANOG位于基因网络调控中心,对胚胎第二次命运决定和基态多能性的建立至关重要。该文将在NANOG生物学特征的基础上,重点讨论其在早期胚胎发育、胚胎干细胞与诱导性多能干细胞中的功能。  相似文献   

17.
Human embryonic stem cells: Problems and perspectives   总被引:1,自引:0,他引:1  
Generation of human embryonic stem cell lines is one of the most important achievements in biological science in the 20th century. It has excited a wide scientific and social response, as embryonic stem cells (ESC) may, in the future, be regarded as an unlimited source of transplantation materials for replacement cell therapy. ESC lines are derived, cultured, inner cell mass from human blastocysts is used in the in vitro fertilization procedure. To date, human embryonic cell lines have been obtained in more than 20 countries. In our country, embryonic stem cell research is carried out in the Institute of Cytology, Russian Academy of Sciences and the Institute of Gene Biology, Russian Academy of Sciences. Studies with human ESC go in several directions. Much attention is paid to finding the most optimal conditions for ESC cultivation, mainly to the development of cultivation techniques excluding animal feeder cells and other components of animal origin. Another direction is a large-scale analysis of gene expression specific to the embryonic state of cells and the corresponding signaling pathways. Great efforts are being focused on the directed differentiation of ESC into various tissue-specific cells. It has been shown that in vitro ESC are able to differentiate into virtually any somatic cells. Works are in progress to develop methods for “therapeutic cloning,” i.e. the transfer of somatic nuclei into enucleated oocytes or embryonic stem cell cytoblasts and their reactivation. Of great importance is the standardization of the human ESC lines. However, standard requirements for cells utilized for research or therapeutic purposes may be different. It has been found that many permanent human ESC lines underwent genetic and epigenetic variations. Therefore, the cell line genetic stability should be periodically verified. The main purpose of the review is to provide a detailed consideration of research on the genetic stability of human and mouse ESC lines. Human ESC lines established both in our country and others could not thus far be used in clinical practice. It is highly probable that undifferentiated ESCs cannot be applied for therapeutic purposes, as there is a risk of their malignant transformation. Therefore, main efforts should be focused on the production ESC progenitor and highly differentiated cells suitable for transplantation.  相似文献   

18.
The unique differentiation potential of inner cell mass derived embryonic stem cells together with their outstanding self-renewal capacity makes them a desirable source for somatic cell therapy of human diseases. Somatic cells are gained by in vitro differentiation of embryonic stem cells, however, the differentiation potential of embryonic stem cells varied even between isogenic cell lines. Variable differentiation potentials may either be a consequence of an inherent inhomogeneity of gene expression in the inner cell mass or may have technical reasons. To understand variations in the differentiation potential, we generated pairs of isogenic, monozygotic twin, and single inner cell mass derived clonal embryonic stem cell lines, and demonstrate that they differentially express the leukaemia inhibitory factor receptor gene. Variations of leukaemia inhibitory factor receptor protein levels are already evident in the inner cell mass and predispose the cardiomyogenic potential of embryonic stem cell lines in a Janus activated kinase dependent manner. Thus, a single inner cell mass may give rise to embryonic stem cell lines with different developmental potentials.  相似文献   

19.
20.
Devolder K 《Bioethics》2005,19(2):167-186
Discussions about the use and derivation of pluripotent human embryonic stem cells are a stumbling block in developing public policy on stem cell research. On the one hand there is a broad consensus on the benefits of these cells for science and biomedicine; on the other hand there is the controversial issue of killing human embryos. I will focus on the compromise position that accepts research on spare embryos, but not on research embryos ('discarded-created-distinction', from now on d-c-d). I will point out that this viewpoint is hard to maintain. The main focus is that the 'revealed beliefs' of its defenders are inconsistent with their 'professed beliefs', more specifically with their main argument, i.e. the potentiality argument. I will point out that (1) the defenders of d-c-d actually grant a relative moral status to the human embryo, (2) this moral status is dependent on internal and external criteria of potentiality, (3) potentiality seen as a variable value that also depends on external criteria cannot justify d-c-d, and (4) an approach to human embryonic stem cell-research that would also allow the use of research embryos is more compatible with the feelings, attitudes and values of those who currently defend d-c-d and, therefore, could lead to a broader consensus and to actions that alleviate individual human suffering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号