首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The population dynamics of the cassava green mite Mononychellus tanajoa was studied on cassava during 35 weeks (early March to first of November 1989) in an experimental field near Lake Victoria in Western Kenya. The mite population peaked at the onset of the long dry season with 1,100 mites/leaf, declined sharply to a level of about 300 individuals/leaf, not to increase again until the next rainy season commenced. An indigenous phytoseiid predator Iphiseius degenerans was abundant during the dry spell with a maximum about 9 predators/leaf.A nonlinear regression analysis revealed that food depletion in combination with I. degenerans predation limited the population growth of the mites, whereas rain intensity had no effect. The predator exhibited no aggregative response to high densities of M. tanajoa and stayed mainly in the lower part of the canopy while the spider mites preferred the top, indicating that I. degenerans is a generalist predator without capacity to control M. tanajoa alone. However, in combination with another density dependent factor, such as food depletion, the predator may have prevented the spider mites from causing complete defoliation during the dry season.  相似文献   

2.
Six different sampling methods to estimate the density of the cassava green mite, Mononychellus tanajoa, are categorized according to whether leaves or leaflets are used as secondary sampling units and whether the number of leaves on the sampled plants are enumerated, estimated from an independent plant sample, or not censused at all. In the last case, sampling can provide information only on the average number of mites per leaf and its variance, while information on stratum sizes is necessary to estimate the mean number of mites per plant as well. It is shown that leaflet-sampling is as reliable as leaf-sampling for the same number of sampling units. When stratum sizes are estimated from a separate plant sample, sampling time may also be reduced, but the estimated mean density and its variance may be biased if mite density and plant size are correlated. Sampling data show that the within-plant variance contributes relatively little to the overall variance of the population density estimates. It points at a sampling strategy in which the number of primary units (plants) is as large as possible at the expense of secondary units (leaflets) per plant. Mean-variance relationships may be applied to estimate sample variances and can be used even when only one leaflet is taken per plant per stratum. An unequal allocation of primary units among strata can increase precision, but the gain is small compared with an equal allocation. Leaf area can be predicted from the length of the longest leaflet and the number of leaflets.  相似文献   

3.
Monitoring of a population of the phytophagous cassava green mite, Mononychellus tanajoa (Bondar), and its natural enemies was undertaken in central Bahia, Brazil, in mid-1996. In spite of the presence of extremely high densities of the predatory phytoseiid mite Neoseiulus idaeus Denmark & Muma, the phytophagous mite population reached such high densities itself that there was total overexploitation of the cassava plants, leading to total leaf loss. Meanwhile, the mite-pathogenic fungus Neozygites tanajoae Delalibera, Humber & Hajek did not affect the M. tanajoa population in its growth phase as there was no inoculum present, even though we predict from a simple regression model that there was the potential for epizootics at that time. Soon after the M. tanajoa population crashed due to defoliation, there could have been an epizootic but there were simply no mite hosts to infect. These data demonstrate the ineffectiveness of one natural enemy (the predator) in terms of prey population regulation and demonstrate the importance of timing in the possible effectiveness of the other (the pathogen). For the pathogen, this probably explains its sporadic effect on host populations as previously reported. We conclude that the fungus is likely to be most useful as an adjunct to biological control with predatory mites other than N. idaeus.  相似文献   

4.
Sampling data from a single cassava plant were used for testing various sampling methods. It was found that the degree of leaf damage was poorly correlated with the number of cassava green mites (CGM) present on a leaf. Sampling of specific mite stages should take into consideration the effect of leaf damage on the age distribution of the mites. Simple random sampling resulted in a high between-leaf variation caused by a vertical gradient in spider-mite abundance. The between-leaf variation could be reduced by stratified sampling. The optimum number of strata was three. Subsampling of leaflets combined with stratification provided the most precise estimates for a given sampling effort.Various regression methods for estimating the area of a cassava leaf from some simple measurements were compared. Combining the length of the longest leaflet with the number of leaflets gave the best prediction, explaining 95.8% of the total variation in observed leaf areas.  相似文献   

5.
The cassava green mite, Mononychellus tanajoa, is a key pest of cassava, Manihot esculenta Crantz (Euphorbiaceae), and it may be kept in check by naturally occurring predatory mites of the family Phytoseiidae. In addition to predatory mites, abiotic factors may also contribute to regulate pest mite populations in the field. Here, we evaluated the population densities of both M. tanajoa and the generalist predatory mite Euseius ho DeLeon (Acari: Phytoseiidae) over the cultivation cycle (11 months) of cassava in four study sites located around the city of Miranda do Norte, Maranhão, Brazil. The abiotic variables rainfall, temperature and relative humidity were also recorded throughout the cultivation cycle of cassava. We determined the relative importance of biotic (density of E. ho) and abiotic (rainfall, temperature and relative humidity) factors to the density of M. tanajoa. The density of M. tanajoa increased whereas the density of E. ho remained constant throughout time. A hierarchical partitioning analysis revealed that most of the variance for the density of M. tanajoa was explained by rainfall and relative humidity followed by E. ho density and temperature. We conclude that abiotic factors, especially rainfall, were the main mechanisms driving M. tanajoa densities.  相似文献   

6.
There is an increasing awareness that vegetation diversity can affect herbivore and natural enemy abundance and that plants can play a major role in directly manipulating natural enemy abundance for protection against herbivore attacks. Using data from cassava fields, we aimed at (i) testing the capacity of the predatory mite Typhlodromalus aripo to control the herbivorous mite Mononychellus tanajoa in a chemical exclusion trial; and (ii) testing, based on the differential preference by T. aripo for cassava cultivars, how combinations of two morphologically different cassava cultivars with differential suitability to the predator can improve its population densities on the non‐favourable cultivar, thereby reducing M. tanajoa densities with subsequent increases in cassava yield. The study was conducted in a cassava field in Benin, West Africa. The experiments confirmed that T. aripo effectively suppresses M. tanajoa populations on both cultivars and showed, in the no‐predator‐exclusion experiments, that cultivar combinations have significant effects on M. tanajoa and T. aripo densities. Indeed, T. aripo load on the non‐preferred cultivar was lowest in subplots where the proportion of T. aripo‐preferred cultivar was also low, while, and as expected, M. tanajoa load on the non‐preferred cultivar showed decreasing trends with increasing T. aripo densities. The possible mechanisms by which cultivar mixing could increase predator load on the non‐favourable cultivar were discussed. Our data showed that appropriate cultivar combinations effectively compensate for morphologically related differences in natural enemy abundance on a normally predator‐deficient cultivar, resulting in lower pest densities on the non‐favourable cultivar. In practical terms, this strategy could, in part, enhance adoption of cultivars that do not support sufficient levels of natural enemies for pest control.  相似文献   

7.
The cassava green mite, Mononychellus tanajoa (Bondar), is an exotic pest in Africa and is the target of a classical biological control programme. Field data from the Neotropics, where it is indigenous, are presented for the first time, charting the variation in abundance of M. tanajoa over several seasons. This was highly variable, with a characteristic trough mid-year and a peak at the turn of the year. This pattern corresponded positively with rainfall levels, appearing to fit a phenology also characteristic of African studies, where rainfall at the start of the wet season promotes a leaf flush and so growth in M. tanajoa populations. Analyses implied some impact of leaf-inhabiting predatory mites (predominantly Neoseiulus idaeus Denmark & Muma) and a considerable impact of the fungal pathogen Neozygites floridana Fisher on M. tanajoa populations. This pathogen was not observed in the host population for several (generally dry) periods implying survival outside the host, perhaps as resting spores. This is a particularly desirable characteristic of a biological control agent. It is therefore proposed that N. floridana might be of particular use in drier cassava-growing areas where rainfall at the outset of the wet season is not sufficiently intense to cause heavy M. tanajoa mortality but may be sufficient to stimulate epizootics of the fungal pathogen, protecting the flush of new cassava growth.  相似文献   

8.
A relative scale of Leaf Damage Indices (LDI) from 0 to 5 describes the visible injury to leaves of cassava, Manihot esculenta Crantz caused by the cassava green mite, Mononychellus tanajoa (Bondar). As the scale is ordinal and thus not quantitative, the observed LDIs are converted individually to relative loss of chlorophyll on a ratio scale before an average injury is determined. This calibration is required because the ordinal and the ratio scales are not linearly related. A calibration curve was established on the basis of laboratory experiments to determine the chlorophyll content, c, of leaves representing various leaf damage indices. Several monotonously decreasing functions were fitted to the experimental data yielding the following relation , where c o is the chlorophyll content of unijured leaf tissue and a is a constant describing the steepness of the curvilinear relation. This means that LDIs could be converted to relative loss of chlorophyll, d, where . The photosynthetically active leaf area of plants can be estimated by combining the relative loss of chlorophyll with leaf area assessments and adds the effects of defoliation and suspended growth to the chlorophyll depletion. The difference in photosynthetically active area that arises between uninjured and injured plants over a period of time provides a measure of spider mite injury that can be related to growth and yield. The method integrates the injury inflicted over a period of time, allows successive observations of the same plants, and is rapid and reasonably precise considering the time savings.  相似文献   

9.
The genus Mononychellus is represented by 28 herbivorous mites. Some of them are notorious pests of cassava (Manihot esculenta Crantz), a primary food crop in the tropics. With the exception of Mononychellus tanajoa (Bondar), their geographic distribution is not widely known. This article therefore reports observational and specimen-based occurrence data of Mononychellus species associated with cassava. The dataset consists of 1,513 distribution records documented by the International Center for Tropical Agriculture (CIAT) between 1975 and 2012. The specimens are held at CIAT’s Arthropod Reference Collection (CIATARC). Most of the records are from the genus’ native range in South America and were documented between 1980 and 2000. Approximately 61% of the records belong to M. tanajoa, 25% to M. caribbeanae (McGregor), 10% to M. mcgregori (Flechtmann and Baker) and 2% to M. planki (McGregor). The complete dataset is available in Darwin Core Archive format via the Global Biodiversity Information Facility (GBIF).  相似文献   

10.
Two field trials with two groups of cassava (Manihot esculenta Crantz) cultivars were conducted under rainfed conditions in seasonally dry and semiarid environments at the northern coast of Colombia, South America, to evaluate the genetic diversity in photosynthesis and productivity, and to determine their interrelationship. There were significant differences among cultivars in both environments, in average net photosynthetic rates (P N ) of upper canopy leaves and in final dry root yields. Both P N and dry root yields were much higher in the seasonally dry environment than in the semiarid one. Highly significant correlation (r 2 = 0.90, p < 0.001) between leaf P N and dry root yield was observed across environments, suggesting that selection in parental plants for high photosynthesis might lead to high yields if combined with other yield determinants, such as leaf area duration, high harvest index and strong root sink. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The mite-pathogenic fungus Neozygites floridana Fisher (Entomophthorales: Neozygitaceae) is considered to have potential for the biological control of the cassava green mite, Mononychellus tanajoa (Bondar). However, its activity is sporadic and laboratory data suggest a strong dependence on night-time saturation deficits for transmission. We report on an epizootic of this fungus in a mite population in northeastern Brazil. During the epizootic, host populations appeared to be limited by a combination of the pathogen and a predatory mite Neoseiulus idaeus (Acari: Phytoseiidae). When temperatures increased, the epizootic finished and the host population began to grow. Abiotic conditions could not explain the variation in host mortality following pickup of infective propagules in this epizootic. However, night-time saturation did help to explain the variation in transmission from infective cadavers to newly killed hosts. This supports laboratory observations that horizontal transmission between hosts is determined mainly by saturation deficits, while the process of infection is little affected by abiotic conditions. A further field observation was the near-absence of resting spores in dead mites (ca. 0.1% of cadavers), suggesting that the pathogen population was unsuccessful in producing inoculum to infect future M. tanajoa populations. The implications are that this pathogen will only be effective as a biological control agent in periods of high relative humidity, and establishment in new areas may be limited by resting spore formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The functional responses of protonymph and adult female Iphiseius degenerans and Neoseiulus teke to increasing density of three stages of their prey, the cassava green mite (CGM), Mononychellus tanajoa, were studied on excised cassava leaf discs under laboratory conditions. The responses obtained were predominantly sigmoid type III curves with the highest plateau when both stages of I. degenerans and N. teke were preying on CGM eggs. In all cases, the predation rate of the former species exceeded that of the latter. The empirical data were fitted by four different models. From the models, the attack coefficient (a) and handling time (T h) were estimated. For a given predator stage (protonymph or adult female), the predator's attack coefficient declines and handling time increases as the prey gets larger. For a given prey stage, the predator's attack coefficient increases and handling time decreases as the predator stage becomes larger.  相似文献   

13.
We assessed the reproductive responses of adult female Iphiseius degenerans and Neoseiulus teke to increasing density of three stages of their prey, Mononychellus tanajoa, on cassava leaf discs under laboratory conditions. The oviposition rates increased with number of prey consumed per predator per day with a maximum of approximately two eggs per day for I. degenerans and four eggs per day for N. teke. The oviposition rate of N. teke was higher when consuming eggs than other prey stages. Neoseiulus teke was more efficient than I. degenerans in converting consumed prey into egg production. The data were adequately described by simple mathematical models.  相似文献   

14.
Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.  相似文献   

15.
16.
A microsomal system catalyzing the in vitro synthesis of the aglycones of the two cyanogenic glucosides linamarin and lotaustralin has been isolated from young etiolated seedlings of cassava (Manihot esculenta Crantz). A prerequisite to obtain active preparations is the complete removal of the endosperm pellicle covering the cotyledons before seedling homogenization. The rates of conversion of the parent amino acids valine and isoleucine to their cyanohydrins are 19 and 6 nmol/h/mg protein, respectively. The conversion rates for the corresponding oximes (2-methylpropanal oxime and 2-methylbutanal oxime) are 475 and 440 nmol/h/mg protein and for the nitriles (2-methylpropionitrile and 2-methylbutyronitrile) 45 and 75 nmol/h/mg protein. With the exception of 2-cyclopentenylglycine, none of the additionally tested amino acids are metabolized, whereas a broad substrate specificity is observed using oximes and nitriles as substrates. The in vitro biosynthesis is photoreversibly inhibited by carbon monoxide, demonstrating the involvement of cytochrome P450 in the hydroxylation processes. All tissues of the cassava seedling contain cyanogenic glucosides. The microsomal enzyme system responsible for their synthesis is restricted to the cotyledons and their petioles. This demonstrates that the cyanogenic glucosides are actively transported to other parts of the seedling. The enzyme activity decreases with the height of the etiolated seedling and is barely detectable in seedlings above 75 mm.  相似文献   

17.
The effects of cassava exudate and prey densities on reproduction and survival of the predatory mite, Typhlodromalus limonicus (Garman & McGregor) (Acari: Phytoseiidae), were investigated in the laboratory. Females were provided either cassava exudate ad lib. daily, low or high numbers of the cassava green mite prey, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) daily, or exudate for 5 or 10 days before switching to a low or high prey diet. Females fed only exudate laid no eggs. Females fed exudate before prey experienced a significant decrease (30%) in the number of eggs laid compared to females fed high numbers of prey daily. The reduction in fecundity was the result of prolonged preoviposition periods (2.0 days on prey daily vs 4.0 days on exudate before prey) and reduced number of eggs laid per female per day (1.7 eggs per female per day on prey daily vs 0.4 eggs per female per day on exudate before prey). Females fed only exudate had a greater survival rate and longevity than females fed prey daily or females fed exudate before a diet of prey. These results suggest that T. limonicus can survice for a limited period on cassava exudate during periods of low prey availability, but requires prey to complete oögenesis and propagate the population.  相似文献   

18.
The roots of cassava plants (Manihot esculenta Crantz) accumulate starch as their major form of carbohydrate reserve. Starch accumulation and properties are determined by a balance between starch biosynthesis and degradation processes. Alpha-amylases (EC 3.2.1.1) are alpha-1,4 endoglycolytic enzymes, responsible for the mobilization of stored carbohydrate reserves by initiating the degradation process. Alpha-amylase genes have been shown to be differentially expressed at various developmental stages and environmental conditions through the action of plant hormones such as abscisic acid (ABA) and gibberellic acid (GA). In this study, we isolated an alpha-amylase gene from cassava tuberous roots (designated as MEamy2, GenBank accession number DQ011041). The deduced product of MEamy2 is 407 amino acid residues in length, with a calculated molecular mass of 46.7 kDa and an isoelectric point of 8.66. Southern blot analysis showed that the MEamy2 is present as a single copy in cassava genome. It shares the highest homology with AMY8 from apple fruit. The predicted structural model of MEamy2 contains three domains, active sites and starch-binding domain that are common with other plant alpha-amylases. RT-PCR analysis showed that the MEamy2 gene expression was induced in cassava roots within 2 hours after treatment with GA, but not ABA.  相似文献   

19.
Summary Fifty-five organisms comprising 40 bacteria, eleven yeasts and four moulds were isolated from various habitats and tested for the production of the enzyme linamarase using the release of HCN and glucose from linamarin. Only seven organisms were shown to produce linamarase: the bacteriaLeuconostoc mesenteroides, Alcaligenes faecalis, the yeastsSaccharomyces cerevisiae andRhodotorula minuta, and the mouldsAspergillus flavus, A. niger andFusarium oxysporum. A preliminary screening method used the ability to break down the glucosidep-nitrophenyl--D glucoside (PNPG). Organisms breaking down PNPG also broke down linamarin and vice-versa. The highest linamarase producers among the yeasts and bacteria as determined by HCN liberation from cassava pulp were the yeastsSacch. cerevisiae andR. minuta in about 80 and 96 hours, respectively. SinceSaccharomyces sp. withstood the highest concentration of the cyanide ion it is suggested as the organism of preference among the isolates for cassava pulp detoxication. Storage of linamarase-producing organisms in refrigerated cassava pulp was found to be a suitable method of preserving and transporting them.
Resumen Cincuenta y cinco organismos, incluyendo cuarenta bacterias, once levaduras y cuatro hongos se aislaron a partir de distintos hábitats y se estudió su producción de enzyma linamarasa, determinada por la liberación de HCN y glucosa a partir de linamarina. Tan solo siete organismos producían linamarasa: las bacteriasLeuconostoc mesenteroides yAlcaligenes faecalis, las levadurasSaccharomyces cerevisiae yRhodotorula minuta y los hongosAspergillus flavus, A. niger yFusarium oxysporum. Como método de estudio preliminar se utilizó la habilidad para degradar el glucósidop-nitrofenil-l-glucósido (PNPG), ya que los organismos capaces de degradar PNPG también eran capaces de degradar linamarina y viceversa. Entre bacterias y levaduras los mayores productores de linamarasa, expresada como cantidad de HCN liberado a partir de pulpa de casava, fueronSaccharomyces cerevisiae yRhodotorula minuta, a las 80 y 96 horas respectivamente. Al soportarSaccharomyces sp. la mayor de las concentraciones de HCN ensayadas se ha sugerido que este podría ser considerado, de entre los organismos aislados, como el más idoneo para ser utilizado en la detoxificación de la pulpa de casava. Se considera que un método adecuado para la preservación de organismos productores de linamarasa es su almacenamiento en pulpa de casava refrigerada.

Résumé Cinquante-cinq organismes comprenant 40 bactéries, 11 levures et 4 moisissures ont été isolés à partir de différents habitats et testés pour la production de l'enzyme linamarase qui utilise le HCN et le glucose provenant de la linamarine. Une méthode de criblage préliminaire utilise l'aptitude à dégrader lep-nitrophényl-D-glucoside (PNPG). Les organismes qui dégradent le PNPG dégradent aussi la linamarine et réciproquement. Sept organismes seulement produisent la linamarase: les bactériesLeuconostoc mesenteroides etAlcaligenes faecalis, les levuresSaccharomyces cerevisiae etRhodotorula minuta, et les moisissuresAspergillus flavus, A. niger etFusarium oxysporum. D'après la vitesse de libération d'HCN à partir de la pulpe de manioc, les meilleurs producteurs de linamarase sont les levuresS. cerevisiae etR. minuta agissant, respectivement, en 80 et 96 heures environ.Saccharomyces étant parmi les organismes isolés celui qui tolère la concentration en ion cyanure la plus élevée, son utilisation est proposée pour détoxifier la pulpe de manioc. La conservation des organismes producteurs de linamarase dans la pulpe de manioc réfrigérée est la méthode proposée pour la préserrvation et le transport de ces organismes.
  相似文献   

20.
Survival of pathogens during long periods of unfavorable conditions can be critical to their ecology and to their use in biological control. In northeastern Brazil, the mite pathogen Neozygites floridana must survive hot and dry conditions between wet seasons when it infects the cassava green mite Mononychellus tanajoa. We report on large numbers of mite cadavers bearing resting spores towards the end of epizootics in mid-1995. High within-leaf variability indicated that local factors may be important in determining resting spore formation. These spores remain in the host cadaver on a leaf until the cadaver breaks up, whereupon the spores fall freely to the soil, there to remain dormant. Laboratory simulation of field conditions led to ca. 25% of mycosed individuals bearing resting spores. Mummies (without resting spores) kept in hot and dry conditions showed little or no viability within 2 months, implying no role for survival over extended dry periods. It is proposed that resting spores form the principal means by which this pathogen survives the dry season in the study area. This has implications for its introduction to new areas in classical biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号