首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of pretreatment of rats with various symmetrical dialkylnitrosamines on the repair of O6-methylguanine produced in liver DNA by a low dose of [14C]dimethylnitrosamine (DMN) has been examined. DMN, diethylnitrosamine (DEN), dipropylnitrosamine (DPN) or dibutylnitrosamine (DBN) were administered to rats for 14 consecutive weekdays at a daily dose of 5% of the LD50. Animals were given [14C]DMN 24 h after the last dose and were killed 6 h later. DNA was extracted from the liver and analysed for methylpurine content after mild acid hydrolysis and Sephadex G-10 chromatography. While the amounts of 3-methyladenine and 7-methylguanine were only slightly different from controls, the amounts of O6-methylguanine in the DNA of the dialkylnitrosamine pretreated rats were about 30% of those in control rats, indicating a considerable increase in the capacity to repair this base. Liver ribosomal RNA from control and dialkylnitrosamine pretreated rats contained closely similar amounts of O6-methylguanine suggesting that the induced enzyme system does not act on this base in ribosomal RNA in vivo. Pretreatment with these dialkylnitrosamines also enhanced the repair of O6-methylguanine in liver DNA when they were given as a single dose (50% of the LD50) either 3 or 7 days before the [14C]DMN. In addition, single low doses of DMN or DEN (5% of the LD50) given either 1 or 6 days before [14C]DMN increased O6-methylguanine repair and the magnitude of the effect after DEN was similar to that produced by the other pretreatment schedules. The possible mechanism(s) of the induction of O6-methylguanine repair and its relation to hepatotoxicity, DNA alkylation, carcinogenesis and the adaptive response in Escherichia coli are discussed.  相似文献   

2.
After injecting rats with di[14C]methylnitrosamine we have prepared liver chromatin and have examined firstly, the methylation level of the DNAase I-degradable fraction of the DNA and secondly, the level of methylation and the stability of methylated sites in chromatin RNA. Our results show that the level of 7-methylguanine in the degradable DNA is about 1.3 times that of whole DNA; therefore in the 20% or so of the DNA which is undegradable by DNAase I, the level must be very low or zero. Experiments using chromatin from rats injected with unlabelled dimethylnitrosamine plus [3H]thymidine show that the specific activity is similar in the DNAase I degradable and undegradable fractions, suggesting that there is no preferential repair in the latter region. In chromatin RNA, the level of 7-methylguanine is higher than that of whole DNA and decreases fairly rapidly within 30 h after dimethylnitrosamine treatment. Our results indicate that this decrease is due to some type of excision or repair process rather than to normal turnover.  相似文献   

3.
A study has been made of the histone and non-histone chromosomal proteins of rat liver after treatment in vivo with dimethylnitrosamine (DMN) (2 mg/kg). DMN was found not to affect histone turnover, as measured by 3H-labelled amino-acids incorporation. A decrease was observed in specific activity of the histones with time after injection of [14C]DMN or [14C]-formate and this was attributable to demethylation of both abnormal and normal methylation sites in these proteins. In the case of the non-histone proteins, DMN was found to increase greatly the turnover of those non-histone proteins loosely associated with chromatin DNA and RNA; turnover of those non-histone proteins tightly bound to chromatin DNA and RNA was unaffected. Demethylation of both normal and abnormal methylation sites was found to take place from both non-histone protein fractions. In the case of the loosely bound non-histone proteins a lower rate of demethylation was observed after DMN treatment.  相似文献   

4.
The ability of seven methylating agents to form 7-methylguanine and O6-methylguanine was compared to their ability to initiate carcinogenesis as measured by the initiation of GGTase-positive foci. The seven methylating agents studied were methyl-N-nitroso-p-toluenesulfonamide (diazald), dimethylhydrazine (DMH), dimethylnitrosamine (DMN), dimethylsulfate (DMS), methyl methanesulfonate (MMS), methyl-N-nitro-N-nitrosoguanidine (MNNG) and methyl-N-nitrosourea (MNU). The DNA methylation and initiation of GGTase-positive foci was determined in partial hepatectomized rats. The formation of foci was promoted by 500 ppm sodium phenobarbital in the drinking water. While six of the seven compounds (DMH, DMN, DMS, MMS, MNNG and MNU) produced 7-methylguanine, only the four compounds (DMH, DMN, MNNG and MNU) that produced O6-methylguanine initiated GGTase-positive foci. The extent of O6-methylguanine produced by the methylating agents did not correspond with their potency to initiate GGTase-positive foci. Therefore, the initiation of GGTase-positive foci required the formation of O6-methylguanine. However, some sequential event altered the quantitative relationship of O6-methylguanine formation to the incidence of GGTase-positive foci.  相似文献   

5.
The possibility that carcinogens may affect methylase-mediated methylation of replicating DNA was investigated. A system eminently suitable for this purpose is liver regenerating after partial hepatectomy, as one injection of dimethylnitrosamine (DMN) given during the ensuing period of increased DNA synthesis induces hepatocellular carcinoma. Methylation of DNA by DNA methylase normally occurs only in proportion to DNA synthesis. Therefore simultaneous measurements were made of synthesis (incorporation of [14C]adenine into DNA adenine, or of d[5-3H]cytidine into DNA cytosine), and of methylation (incorporation of [methyl-3H]methionine into 5-methylcytosine of DNA) in liver regenerating after partial hepatectomy. After treatment with DMN, the ratio of methylation: synthesis remained within the normal range. Methyl methanesulphonate (MMS), a compound which damages DNA in regenerating liver in a similar but not identical way to DMN and which does not induce tumors in liver even when given after partial hepatectomy, caused an increase in methylation in relation to synthesis. These experiments therefore do not support the view that altered DNA methylase activity is involved in carcinogenesis.  相似文献   

6.
1. The turnover of cerebral histones and DNA after injection of [4,5-(3)H]leucine or [methyl-3-(3)H]thymidine, respectively, was studied in the developing chick. 2. Chromatin was prepared from chick nuclei that had been purified by centrifugation through 1.9m-sucrose. 3. Nuclear proteins were fractionated into three major histone classes, F1 (lysine-rich), F2(b) (slightly lysine-rich) and [F3+F2(a)] (arginine-rich), and a non-histone protein residue. 4. The proportions of the histone classes remained constant throughout the period of development studied. 5. All histone fractions decayed at a similar rate, initially with a half-life of around 5 days, later with a half-life of 19 days. 6. Non-histone proteins from chromatin decayed in a heterogeneous manner with a wide range of half-lives. 7. Short-term labelling studies showed that all histone fractions were synthesized at the same rate. 8. Some non-histone proteins were very rapidly synthesized relative to histones. 9. DNA had a longer half-life than any histone fraction studied. A biphasic exponential decay curve with half-lives of 23 and 50 days was found. 10. It was concluded that the turnover of histones can occur independently of that of DNA and that different histone classes have similar rates of synthesis and decay.  相似文献   

7.
Experiments were carried out to determine whether replication of alkylated DNA could be involved in the initiation of hepatocellular carcinoma which results from a single administration of dimethylnitrosamine (DMN) given after partial hepatectomy. The incidence of tumours is higher when DMN is given during the wave of DNA synthesis induced by the operation than when given in the early prereplicative stage. Therefore the alkylation of DNA in the regenerating liver by DMN given at these times and the effect of DMN on DNA synthesis were investigated. The extent, duration and pattern of alkylation of DNA, including the formation of 0-6-methylguanine, were similar whether DMN was given in the early pre-replicative stage (6 h after the operation) or during the period of DNA synthesis (at 24 h). DMN given a 6 h very greatly reduced the wave of DNA replication which would otherwise have ensued. When given at 24 h, by which time DNA synthesis was already taking place, DMN reduced the rate of incorporation of (-3H)thymidine after 1-2 h delay. However, in neither case was DNA synthesis reduced to the level occurring in normal intact liver. Treatment with diethylnitrosamine (DEN) at 6 h or at 24 h had a similar effect to DMN on the wave of DNA replication induced by partial hepatectomy. Methyl methanesulphonate (MMS given in the early pre-replicative stage delayed the wave of DNA synthesis by about 8 h, but when it did take place the extent of synthesis was as great as in untreated animals. When given during the period of DNA replication, MMS rapidly reduced the rate of synthesis. As in the case of the nitrosamines, synthesis was not reduced to the level occuring in normal intact animals. The difference from the nitrosamines lies in the nature of the alkylated bases formed in DNA. The fact that a single treatment with DMN induces cancer in partially hepatectomised animals but not in intact adult animals is not considered to be due to a gross difference in the nature of the alkylation of DNA. The experiments described support the concept that replication of DNA containing bases which are likely to mispair during replication may be necessary to 'fix' the lesion and thus cause a permanent inheritable change in the genetic material.  相似文献   

8.
A chromatographic procedure for improved separation of deoxyribonucleosides and methylated deoxyribonucleosides is described. DNA was isolated from liver and small intestine of rats treated with [14C]dimethylnitrosamine ([14C]DMN) or N-[3H]methyl-N-nitrosourea ([3H]MNU), and the purified DNA was hydrolyzed enzymatically. The deoxyribonucleosides were chromatographed on an Aminex A-6 cation exchange column at 37°C with 0.4 M ammonium formate, pH 4.5, as eluant. In addition to showing the presence of the expected alkylated products, N7-methyldeoxyguanosine (determined as N7-methylguanine) and O6-methyldeoxyguanosine, several other minor methylated products were found in liver and intestinal DNA of rats treated with DMN or MNU. Two of these products are believed to be N3-methylthymidine and O4-methylthymidine.  相似文献   

9.
1. N[(14)C]-Methyl-N-nitrosourea, [(14)C]dimethylnitrosamine, [(14)C]dimethyl sulphate and [(14)C]methyl methanesulphonate were injected into rats, and nucleic acids were isolated from several organs after various time-intervals. Radioactivity was detected in DNA and RNA, partly in major base components and partly as the methylated base, 7-methylguanine. 2. No 7-methylguanine was detected in liver DNA from normal untreated rats. 3. The specific radioactivity of 7-methylguanine isolated from DNA prepared from rats treated with [(14)C]dimethylnitrosamine was virtually the same as that of the dimethylnitrosamine injected. 4. The degree of methylation of RNA and DNA produced in various organs by each compound was determined, and expressed as a percentage of guanine residues converted into 7-methylguanine. With dimethylnitrosamine both nucleic acids were considerably more highly methylated in the liver (RNA, about 1% of guanine residues methylated; DNA, about 0.6% of guanine residues methylated) than in the other organs. Kidney nucleic acids were methylated to about one-tenth of the extent of those in the liver, lung showed slightly lower values and the other organs only very low values. N-Methyl-N-nitrosourea methylated nucleic acids to about the same extent in all the organs studied, the amount being about the same as that in the kidney after treatment with dimethylnitrosamine. In each case the RNA was more highly methylated than the DNA. Methyl methanesulphonate methylated the nucleic acids in several organs to about the same extent as N-methyl-N-nitrosourea, but the DNA was more highly methylated than the RNA. Dimethyl sulphate, even in toxic doses, gave considerably less methylation than N-methyl-N-nitrosourea in all the organs studied, the greatest methylation being in the brain. 5. The rate of removal of 7-methylguanine from DNA of kidneys from rats treated with dimethylnitrosamine was compared with the rate after treatment of rats with methyl methanesulphonate. No striking difference was found. 6. The results are discussed in connexion with the organ distribution of tumours induced by the compounds under study and in relation to the possible importance of alkylation of cellular components for the induction of cancer.  相似文献   

10.
Non-histone chromatin proteins synthesized during chicken embryonic liver development were labeled with [3H]tryptophan and [3H]methionine and characterized by electrophoresis. During embryonic development protein/DNA ratio in chromatin was low (1.30-1.62) but synthesis of non-histone protein was high. Especially one characteristic fraction K (MW 18 000), tightly bound with DNA was preferentially associated with DNAase II sensitive, active transcribed sequences. In 7-day old and adult chicken synthesis of all non-histone proteins was low, fraction K was absent or synthesized only in small amounts in association with non-active sequences, however protein/DNA ratio in chromatin was high (2.30-2.33).  相似文献   

11.
Occurrence of 7-methylguanine in nucleic acids of rat liver   总被引:8,自引:8,他引:0       下载免费PDF全文
1. Microsomal and soluble RNA of rat liver have been studied by column and paper chromatography after administration of [Me-(14)C]methionine; evidence was obtained for the occurrence of 7-methylguanine, the methyl group being derived from methionine. 2. No evidence was obtained for the occurrence of 7-methylguanine in DNA.  相似文献   

12.
Studies of mammalian systems for the repair of O6-methylguanine in DNA have revealed large differences in the capacities of tissues and cells to perform this function and in the case of rat liver it has been shown that the O6-methylguanine repair system can be stimulated by exposure to hepatotoxic and hepatocarcinogenic regimes. In this report an assessment is made of possible relationships between toxic liver injury, DNA synthesis, cell proliferation and DNA repair by treating Wistar rats with agents selected to provide differing degrees of liver involvement. The effects of long-term (20 week) treatments with acetylaminofluorene (15 mg/kg/day), quinoxaline 1,4-dioxide (10 mg/kg/day), 4-aminobiphenyl-HCl (15 mg/kg/day) and pronethalol (20 mg/kg/day) were assessed, using the same strain of animals in which the original toxicity and carcinogenicity data were obtained. Repair of O6-methylguanine produced in liver DNA by a low, non-toxic dose (2 mg/kg) of [14C]dimethylnitrosamine was increased 3-4-fold throughout the period of treatment with acetylaminofluorene, to a lesser extent by quinoxaline 1,4-dioxide and 4-aminophenyl-HCl and not at all in the case of pronethalol. No evidence was obtained to indicate a direct relationship between O6-methylguanine repair and either the induced hepatotoxicity or the ensuing increased rates of DNA synthesis which occur following exposure to these agents.  相似文献   

13.
N-nitrosodimethylamine N-demethylase activity, DNA alkylation, capacity for O6-methylguanine repair and cell proliferation were measured in livers of newborn and adult CFW mice after a single carcinogenic dose of DMNA. DNA alkylation was found in newborn and adult mouse livers but it was significantly higher in the newborn. 6- and 7-methyl substitutions of guanine were identified by HPLC analysis in newborn and in adult mouse livers. Metabolic 14C incorporation into adenine and guanine was observed only in liver DNA of newborns. O6-methylguanine levels were higher in newborn than adult mice after a single i.p. dose of [14C]DNMA. Liver DNA repair capacity measured as O6-meG-DNA methyltransferase was higher in adults than in newborns. De novo liver DNA synthesis was more inhibited by DMNA pretreatment in newborn than in adult mice. The relationship between these parameters and the greater neonatal liver tumor susceptibility is discussed.  相似文献   

14.
The ability of specific antibodies to react with 7-methylguanine residues in nucleic acids was investigated. Anti-7-methylguanine specific antibodies precipitated polymers of poly-guanylic acid which were methylated to an extent of 35 or 70% at the N-7 position of guanine, indicating that these antibodies could readily detect 7-methylguanine residues in a polynucleotide. This reaction was proportional to the total amount of 7-methylguanine present, suggesting further that quantitation of these residues is possible. To determine the minimal amount required for detection, varying amounts of 7-methylguanine were introduced into calf thymus DNA by alkylation with dimethyl sulfate. While showing no reaction with denatured nonalkylated DNA, the reaction of antibodies with alkylated DNA was proportional to the amount of 7-methylguanine in the preparations. Moreover, the antibodies appeared to detect differences in the distribution of 7-methylguanine residues in extensively methylated DNA. Precipitation was observed with DNA containing as little as one 7-methylguanine residue per 300 nucleotides, suggesting that these antibodies can be used to detect biologically significant levels of 7-methylguanine in viral and cellular nucleic acids.  相似文献   

15.
Treatment of rats with radioactive methionine and nonradioactive dimethylnitrosamine resulted in the formation of radioactive 7-methylguanine in rat-liver DNA. By comparing the specific activity of administered [14C-Me]-dimethylnitrosamine to the specific activity of isolated 7-methylguanine it was determined that following 20 mg/kg dimethylnitrosamine DNA methylation via the 1-carbon pool may account for up to 30% of the total 7-methylguanine formed.  相似文献   

16.
The distribution of DNA repair synthesis in the chromatin of confluent human diploid fibroblasts damaged with N-acetoxy-2-acetylaminofluorene has been studied. Kinetic analysis of staphylococcal nuclease digestion data revealed that initially most of the repair synthesis occurred in nuclease sensitive regions of chromatin. Continuous labeling experiments and pulse chase experiments indicated that with time much of the 3H dThd initially incorporated into nuclease sensitive regions during repair appeared in nuclease resistant regions. Agarose gel electrophoresis was used to demonstrate that these resistant regions were core DNA. In agreement with previous findings [Smerdon, M.J. and Lieberman, M.W., (1978), Proc. Nat. Acad. Sci. USA, in press], studies of the time course of this rearrangement and of repair synthesis revealed similar time dependences and suggested a relationship between rates of repair synthesis and chromatin rearrangement.  相似文献   

17.
Abstract— Alkylation of rat brain nucleic acids in vivo was measured after a single intravenous injection (1 mmol/kg body wt.) of N -[14C]methyl- N -nitrosourea and [14C]methyl methanesulphonate. The main product with both compounds was 7-methylguanine, The extents of methylation on this position in DNA and RNA were similar with methylnitrosourea but methyl methanesulphonate produced twice as much 7-methylguanine in DNA as in cytoplasmic RNA. Brain DNA from rats treated with labelled methylnitrosourea contained radioactive O 6-methylguanine, accounting for about 12 per cent of the radioactivity present as 7-methylguanine and cytoplasmic RNA contained about half this amount of O 6-methylguanine. Neither DNA nor cytoplasmic RNA from methyl methanesulphonatetreated rats contained any detectable O 6-methylguanine. Treatment with both compounds resulted in varying small amounts of methylation of other nucleic acid bases including 1-methyladenine, 3-methyladenine and 3-methylcytosine. The possible relevance of alkylation of brain nucleic acids to the induction of brain tumours is discussed.  相似文献   

18.
Synthesis and turnover of histone I and II in normal rat liver and spleen were studied by Amberlite CG 50 column chromatography. Histone I was separated into three or four subfractions, each of which showed a different rate of incorporation of [3H]lysine. This was verified by a more shallow gradient chromatography developed by Kinkade and Cole [3] for very lysine-rich histone (F1), which showed tissue specific differences between liver and spleen in both the elution pattern and synthetic rates. These subfractions were distinguished from each other by dodecylsulphate electrophoresis. The turnover, or disassociation of histone I and II in chromatin was measured by double-labelling of normal rat liver with [3H] and [14C]lysine. A good correspondence was found between the synthesis and turnover patterns of individual histone I fractions, while the histone II synthesized was conserved for over a month. From consideration of the turnover in relation to the cell population of normal liver tissue, which consists of a very small fraction of growing cells and a very large fraction of resting ones, it was concluded that turnover of histone I must occur even in resting cells. When DNA synthesis in the spleen was completely inhibited by hydroxyurea, the synthesis of histone II was inhibited but that of histone I was only partially inhibited. The remaining synthesis seemed to occur in cells in the resting state. It was concluded tentatively, the continuous replacement of very lysine-rich histones of chromatin must occur even in resting cells in which DNA synthesis has ceased. The biological significance of disassociation of histones from chromatin was discussed.  相似文献   

19.
Human SY5Y neuroblastoma cells which were differentiated in culture by treatment with 7S murine nerve growth factor for 5 weeks and selection with aphidicolin (L. Jensen, Dev. Biol. 120:56-64, 1987) demonstrated a considerably slower rate of removal of DNA adducts of benzo[a]pyrene, benzo[a]pyrenediolepoxide, and N7-methylguanine than did undifferentiated mitotic cells. A dramatic decline in unscheduled DNA synthesis induced by UV radiation was similarly observed. DNA polymerase beta and uracil DNA glycosylase were unchanged after differentiation, DNA polymerase alpha and DNA methylase decreased roughly threefold, and total apurinic-apyrimidinic endonuclease activity increased roughly threefold after treatment.  相似文献   

20.
Recent changes in the risk assessment landscape underscore the need to be able to compare the results of toxicity and dose-response testing between a growing list of animal models and, quite possibly, an array of in vitro screening assays. How do we compare test results for a given compound between vastly different species? For example, what dose level in the ambient water of a small fish model would be equivalent to 10 ppm of a given compound in the rat's drinking water? Where do we begin? To initially address these questions, and in order to compare dose-response tests in a standard rodent model with a fish model, we used the concept of molecular dose. Assays that quantify types of DNA damage that are directly relevant to carcinogenesis integrate the factors such as chemical exposure, uptake, distribution, metabolism, etc. that tend to vary so widely between different phyletic levels. We performed parallel exposures in F344 rats and Japanese medaka (Oryzias latipes) to the alkylating hepatocarcinogen, dimethylnitrosamine (DMN). In both models, we measured the DNA adducts 8-hydroxyguanine, N(7)-methylguanine and O(6)-methylguanine in the liver; mutation frequency using lambda cII transgenic medaka and lambda cII transgenic (Big Blue(R)) rats; and early morphological changes in the livers of both models using histopathology and immunohistochemistry. Pulse dose levels in fish were 0, 10, 25, 50, or 100 ppm DMN in the ambient water for 14 days. Since rats are reported to be especially sensitive to DMN, they received 0, 0.1, 1, 5, 10, or 25 ppm DMN in the drinking water for the same time period. While liver DNA adduct concentrations were similar in magnitude, mutant frequencies in the DMN-exposed medaka were up to 20 times higher than in the Big Blue rats. Future work with other compounds will generate a more complete picture of comparative dose response between different phyletic levels and will help guide risk assessors using "alternative" models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号