首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.  相似文献   

2.
Kuruppu S  Reeve S  Ian Smith A 《FEBS letters》2007,581(23):4501-4506
The aim of this study was to determine if endothelin converting enzyme-1 (ECE-1) like other members of this metalloprotease family undergoes ectodomain shedding. The release/shedding of catalytically active ECE-1 was measured by monitoring the fluorescence resulting from the cleavage of a specific quenched fluorescent substrate. Catalytically active ECE-1 was detected in the media of human umbilical vein endothelial cells, and was confirmed by mass spectrometry based assays. Specificity of cleavage was confirmed by using both narrow and broad specificity inhibitors. In conclusion we demonstrate and characterize for the first time, ECE-1 shedding from the surface of endothelial cells.  相似文献   

3.
Through directed screening of compounds prepared as metalloprotease inhibitors a compound, CGS 30084, that had potent endothelin converting enzyme-1 (ECE-1) in vitro inhibitory activity (IC50 = 77 nM) was identified. Herein we report the synthesis and optimization of ECE-1 inhibitory activity of additional analogues from this lead. Compound 3c, the thioacetate methyl ester derivative of compound 4c, was found to be a long acting inhibitor of ECE-1 activity in rats after oral administration.  相似文献   

4.
Mechanical stretch and para- and/or autocrine factors, including endothelin-1, induce hypertrophy of cardiac myocytes and proliferation of fibroblasts. To investigate the effect of mechanical load on endothelin-1 production and endothelin system gene expression in neonatal rat ventricular myocytes and fibroblasts, we exposed cells to cyclic mechanical stretch in vitro (0.5 Hz, 10-25% elongation, from 1 min to 24 h). Endothelin-1 peptide levels were measured from culture media of myocytes and fibroblasts and human umbilical vein endothelial cells (positive control) by specific radioimmunoassay. Preproendothelin-1 promoter activity was measured via transfection of reporter plasmids and mRNA levels with Northern blot analysis or quantitative RT-PCR. Activity of extracellular signal-regulated kinase was quantified with specific kinase assay. We found that stretching of myocytes activated preproendothelin-1 gene expression, including promoter activation, transient mRNA level increases, and augmented endothelin-1 secretion. In contrast, preproendothelin-1 gene expression was inhibited in stretched fibroblasts. Endothelin-converting enzyme-1beta mRNA levels elevated in stretched fibroblasts but decreased in stretched myocytes. Endothelin receptor type A mRNA levels declined in stretched myocytes, whereas levels were below detection in fibroblasts. Stretch activated extracellular signal-regulated kinase in myocytes, and when the kinase activity was pharmacologically inhibited, the preproendothelin-1 induction was suppressed. Transient overexpression of mitogen-activated ERK-activating kinase-1 induced preproendothelin-1 promoter in myocytes. In summary, mechanical stretch distinctly regulates endothelin system gene expression in cardiac myocytes and fibroblasts. The inhibition of the endothelin system may affect cardiac mechanotransduction and therefore provides an approach in treatment of load-induced cardiac pathology.  相似文献   

5.
Endothelin-converting enzyme (ECE)-1 is a metalloenzyme with four subisoforms, which differ only in their amino-terminal domain. ECE-1a and c are the most common isoforms and are found at the plasma membrane and in the Golgi complex, whereas ECE-1b displays lysosomal localization. We have recently shown that ECE-1a but not ECE-1b also colocalizes with nuclear membrane markers, and that maintenance of cells in high glucose (25 mM) promotes relocalization of ECE-1a from the membrane to the intracellular compartment. To investigate the mechanisms involved in this process, we conducted a search for potential phosphorylation sites, which yielded a different number of putative sites for protein kinase (PK)-C and PKA in the amino-terminal region. Stimulation of Chinese hamster ovary (CHO) cells expressing a green fluorescent protein (GFP)-tagged human ECE-1a or ECE-1b with 100 nM phorbol myristate acetate (PMA) resulted in phosphorylation of ECE-1a, as determined by immunoprecipitation with an antibody to GFP followed by immunoblotting with an antibody to phosphoserine. Stimulation of cells with PMA also promoted intracellular relocalization, as seen in cells grown under high-glucose conditions. Incubation of cells grown in 25 mM glucose with the PKC inhibitor, calphostin C (100 nM), partially prevented the relocalization of ECE-1a from the plasma membrane to intracellular compartments. Stimulation of cells with 100 nM forskolin caused phosphorylation of ECE-1b and not ECE-1a, which is consistent with the lack of a putative PKA site in the ECE-1a amino-terminal sequence. Although phosphorylation is not required for ECE-1 enzymatic activity, these results suggest that ECE-1 isoforms are phosphorylated and that phosphorylation might play an important role in the regulation of intracellular trafficking of ECE-1 subisoforms.  相似文献   

6.
Impulse-conducting Purkinje fibers differentiate from myocytes during embryogenesis. The conversion of contractile myocytes into conduction cells is induced by the stretch/pressure-induced factor, endothelin (ET). Active ET is produced via proteolytic processing from its precursor by ET-converting enzyme 1 (ECE1) and triggers signaling by binding to its receptors. In the embryonic chick heart, ET receptors are expressed by all myocytes, but ECE1 is predominantly expressed in endothelial cells of coronary arteries and endocardium along which Purkinje fiber recruitment from myocytes takes place. Furthermore, co-expression of exogenous ECE1 and ET-precursor in the embryonic heart is sufficient to ectopically convert cardiomyocytes into Purkinje fibers. Thus, localized expression of ECE1 defines the site of Purkinje fiber recruitment in embryonic myocardium. However, it is not known how ECE1 expression is regulated in the embryonic heart. The unique expression pattern of ECE1 in the embryonic heart suggests that blood flow-induced stress/stretch may play a role in patterning ECE1 expression and subsequent induction of Purkinje fiber differentiation. We show that gadolinium, an antagonist for stretch-activated cation channels, downregulates the expression of ECE1 and a conduction cell marker, Cx40, in ventricular chambers, concurrently with delayed maturation of a ventricular conduction pathway. Conversely, pressure-overload in the ventricle by conotruncal banding results in a significant expansion of endocardial ECE1 expression and Cx40-positive putative Purkinje fibers. Coincident with this, an excitation pattern typical of the mature heart is precociously established. These in vivo data suggest that biomechanical forces acting on, and created by, the cardiovascular system during embryogenesis play a crucial role in Purkinje fiber induction and patterning.  相似文献   

7.
Purkinje fibers of the cardiac conduction system differentiate from heart muscle cells during embryogenesis. In the avian heart, Purkinje fiber differentiation takes place along the endocardium and coronary arteries. To date, only the vascular cytokine endothelin (ET) has been demonstrated to induce embryonic cardiomyocytes to differentiate into Purkinje fibers. This ET-induced Purkinje fiber differentiation is mediated by binding of ET to its transmembrane receptors that are expressed by myocytes. Expression of ET converting enzyme 1, which produces a biologically active ET ligand, begins in cardiac endothelia, both arterial and endocardial, at initiation of conduction cell differentiation and continues throughout heart development. Yet, the ability of cardiomyocytes to convert their phenotype in response to ET declines as embryos mature. Therefore, the loss of responsiveness to the inductive signal appears not to be associated with the level of ET ligand in the heart. This study examines the role of ET receptors in this age-dependent loss of inductive responsiveness and the expression profiles of three different types of ET receptors, ET(A), ET(B) and ET(B2), in the embryonic chick heart. Whole-mount in situ hybridization analyses revealed that ET(A) was ubiquitously expressed in both ventricular and atrial myocardium during heart development, while ET(B) was predominantly expressed in the atrium and the left ventricle. ET(B2) expression was detected in valve leaflets but not in the myocardium. RNase protection assays showed that ventricular expression of ET(A) and ET(B) increased until Purkinje fiber differentiation began. Importantly, the levels of both receptor isotypes decreased after this time. Retrovirus-mediated overexpression of ET(A) in ventricular myocytes in which endogenous ET receptors had been downregulated, enhanced their responsiveness to ET, allowing them to differentiate into conduction cells. These results suggest that the developmentally regulated expression of ET receptors plays a crucial role in determining the competency of ventricular myocytes to respond to inductive ET signaling in the chick embryo.  相似文献   

8.
Endothelin-converting enzyme (ECE)-1 cleaves big endothelins, as well as bradykinin and beta-amyloid peptide. Several isoforms of ECE-1 (ECE-1a, 1b, 1c, and 1d) have been identified to date, they differ only in their amino terminus and share the catalytic domain located in the C-terminal end. In addition to full-length ECE-1 forms, we identified novel, alternatively spliced messenger RNAs (mRNAs) of ECE-1b, 1c, and 1d. These splice variants (SVs) lack exon 3', which codes for the transmembrane (TM) region and is present in full-length forms. SV mRNAs were highly expressed in endothelial cells (EC) derived from macrovascular and microvascular beds. Analyses of ECE-1d and its SV forms in stably transfected human embryonic kidney (HEK)-293 cells revealed that both proteins were recognized by antibodies to C-terminal ECE-1, but an antibody to the N-terminal only bound ECE-1d. The novel protein, designated ECE-1sv, has an apparent molecular weight of 75 kDa. ECE-1sv lacks the TM sequence (or signal peptide) and, therefore, is expected to remain cytosolic. Presence of ECE-1sv in different cellular compartments than the full-length forms of the ECE-1 may suggest a distinct physiologic role for these proteins.  相似文献   

9.
Endothelin-1 (ET- 1) is a potent vasoconstrictor. Its biosynthesis is catalyzed by endothelin converting enzyme (ECE). In contrast, atrial natriuretic peptide (ANP) is a potent vasorelaxant and diuretic, and it is mainly degraded by neutral endopeptidase 24.11 (NEP). Therefore, compounds that can suppress the production of ET-1 by inhibiting ECE while simultaneously potentiating the levels of ANP by inhibiting NEP may be novel agents for the treatment of cardiovascular and renal dysfunction. CGS 34043 is one such compound, which inhibited the activities of ECE-1a and NEP with IC50 values of 5.8 and 110 nM, respectively. In vivo, it inhibited the pressor response induced by big ET-1, the precursor of ET-1, dose-dependently in rats, and the inhibition was sustained for at least 2 hr. In addition, CGS 34043 increased plasma ANP by 150% up to 4 hr after an intravenous dose of 10 mg/kg in conscious rats infused with ANP. However, this compound had no effect on the angiotensin I-induced pressor response. These results demonstrate that CGS 34043 is a potent and long-lasting dual inhibitor of ECE-1 and NEP. Consequently, it may be beneficial for the treatment of diseases in which an overproduction of ET-1 and/or enhanced degradation of ANP plays a pathogenic role. The activity of CGS 34753, an orally active prodrug of CGS 34043, is also described.  相似文献   

10.
Generation of the functionally pleiotropic members of the endothelin vasoactive peptide family is critically catalyzed by unique type II metalloproteases, termed endothelin converting enzymes (ECE). Isolation of human ECE-2 (EC 3.4.24.71) cDNAs revealed deduced open reading frames of 787 and 765 amino acids with approximately 60% identity with human ECE-1. Characterization of mRNA variants revealed mRNA structural diversity at the 5'-terminus. Two mRNA species exist containing distinct first and second exons. Furthermore, in one of these species, an in-frame deletion of the intracytoplasmic domain removed 29 amino acids. Because of the previously reported human genetic diseases ascribed to germline mutations of member genes of the endothelin family, ECE2 was localized in human chromosomes with fluorescence in situ hybridization and radiation hybrid mapping to 3q28-q29 and SHGC-20171/D3S1571, respectively.  相似文献   

11.
Endothelin converting enzyme-1 (ECE-1) is a type II membrane protein that is important for the proteolytic activation of big endothelin-1 to endothelin-1. Although the highly conserved zinc-binding motif is known to be located in the extracellular domain, the role(s) of the N-terminal and membrane-spanning signal anchor domains in the biosynthesis and function of ECE-1 isoforms, ECE-1a, ECE-1b, and ECE-1c, remain undetermined. In this study, we provide evidence that the deletion of the cytoplasmic N-terminal tail (residues 1-55) of ECE-1a results in the cleavage of a potential signal peptide located in the signal anchor domain leading to the partial secretion of the recombinant enzyme into the media. However, the truncation of N-terminal and/or signal anchor domain does not affect the activity of ECE-1a. Therefore, our results demonstrate that the hydrophobic signal anchor domain alone is not sufficient for the membrane anchoring of ECE-1a and that the N-terminal domain of ECE-1a is important for membrane targeting as well as the intracellular localization of the enzyme.  相似文献   

12.
Phase resetting in a model of cardiac Purkinje fiber.   总被引:1,自引:1,他引:0       下载免费PDF全文
The phase-resetting response of a model of spontaneously active cardiac Purkinje fiber is investigated. The effect on the interbeat interval of injecting a 20-ms duration depolarizing current pulse is studied as a function of the phase in the cycle at which the pulse is delivered. At low current amplitudes, a triphasic response is recorded as the pulse is advanced through the cycle. At intermediate current amplitudes, the response becomes quinquephasic, due to the presence of supernormal excitability. At high current amplitudes, a triphasic response is seen once more. At low stimulus amplitudes, type 1 phase resetting occurs; at medium amplitudes, a type could not be ascribed to the phase resetting because of the presence of effectively all-or-none depolarization; at high amplitudes, type 0 phase resetting occurs. The modeling results closely correspond with published experimental data; in particular type 1 and type 0 phase resetting are seen. Implications for the induction of ventricular arrhythmias are considered.  相似文献   

13.
14.
This study was designed to test the hypothesis that an outward current (Ix) responsible for action potential repolarization in the cardiac Purkinje fiber is activated by intracellular calcium (Cai). Pharmacological probes were combined with the measurement of membrane current and contractile activity under voltage clamp conditions. Experiments were designed to examine properties of Ix that have previously linked activation of this current to changes in Cai. The independence of Ix from Cai was demonstrated for each case tested. Thus, the results of these experiments support the view that Ix is not a calcium-activated current.  相似文献   

15.
Organic compounds that block calcium channel current (calcium antagonists) are important tools for the characterization of this channel. However, the practically irreversible nature of this block restricts the usefulness of this group of drugs. In this paper, we investigate the influence of light on calcium channel blockade by several organic compounds. Our results show that inhibition of calcium channel current by two dihydropyridine derivatives that contain an o-nitro moiety (nisoldipine and nifedipine) can be rapidly reversed by illumination. The energy range important to this reaction is for light wavelengths between 320 and 450 nm. Calcium channel inhibition by two other dihydropyridine derivatives (nicardipine and nitrendipine) as well as by D600, is not modulated by illumination. These results indicate that the photosensitivity of certain dihydropyridine calcium channel blockers make these compounds useful as reversible blockers of this channel.  相似文献   

16.
Endothelin (ET-1) is a peptide hormone mediating a wide variety of biological processes and is associated with development of cardiac dysfunction. Generally, ET-1 is regarded as a molecular marker released only in correlation with the observation of a hypertrophic response or in conjunction with other hypertrophic stress. Although the cardiac hypertrophic effect of ET-1 is demonstrated, inotropic properties of cardiac muscle during chronic ET-1-induced hypertrophy remain largely unclear. Through the use of a novel in vitro multicellular culture system, changes in contractile force and kinetics of rabbit cardiac trabeculae in response to 1 nM ET-1 for 24 hours can be observed. Compared to the initial force at t = 0 hours, ET-1 treated muscles showed a ∼2.5 fold increase in developed force after 24 hours without any effect on time to peak contraction or time to 90% relaxation. ET-1 increased muscle diameter by 12.5±3.2% from the initial size, due to increased cell width compared to non-ET-1 treated muscles. Using specific signaling antagonists, inhibition of NCX, CaMKII, MAPKK, and IP3 could attenuate the effect of ET-1 on increased developed force. However, among these inhibitions only IP3 receptor blocker could not prevent the increase muscle size by ET-1. Interestingly, though calcineurin-NFAT inhibition could not suppress the effect of ET-1 on force development, it did prevent muscle hypertrophy. These findings suggest that ET-1 provokes both inotropic and hypertrophic activations on myocardium in which both activations share the same signaling pathway through MAPK and CaMKII in associated with NCX activity.  相似文献   

17.
18.
19.
Endothelin converting enzyme-1 (ECE-1) is a type II integral membrane protein and a zinc metalloendopeptidase. ECE-1 generates endothelin-1 (ET-1), the most potent vasoconstrictor yet discovered, by specific proteolytic processing of a precursor peptide, big ET-1. An insect cell expression system, which generates up to 4.3 mg of a secreted, soluble form of ECE-1 (solECE-1) per liter culture medium, has been established and solECE-1 was purified to homogeneity using five chromatographic steps. SolECE-1 expressed in insect cells could be suitable for X-ray structure determination as it is much less glycosylated than solECE-1 from mammalian cells. SolECE-1 from both sources, nonetheless, has comparable enzymatic properties. Despite apparent structural similarities, ECE-1 cleaves big ET-1 exclusively between Trp(21) and Val(22), in contrast to neprilysin, which cleaves big ET-1 at various sites. However, when linear big ET-1, in which the formation of disulfide bonds has been prevented by alkylation of the four cysteines, was used as substrate, it was cleaved by solECE-1 at multiple sites. This result indicates that secondary/tertiary structure of big ET-1 induced by disulfide bonds is essential for the specific cleavage of the Trp(21)-Val(22) bond by ECE-1. A continuous, fluorescent ECE-1 assay has been developed using a novel substrate, 2-aminobenzoyl-Arg-Pro-Pro-Gly-Phe-Ser-Pro-(p-nitro-Phe(8))-Arg. This simple and rapid assay can greatly facilitate discovery of novel ECE inhibitors useful as pharmaceutical agents.  相似文献   

20.
The deposition of β-amyloid (Aβ) peptides in the brain is an early and invariant feature of all forms of Alzheimer's disease (AD). As such, a major focus of AD research has been the elucidation of the mechanisms responsible for the generation of Aβ. As with any peptide, however, the degree of Aβ accumulation is dependent not only on its production, but also on the mechanisms responsible for its removal. In cell-based and in vitro assays we have identified endothelin-converting enzymes (ECEs) as novel Aβ-degrading enzymes that appear to cleave predominately in an intracellular compartment. Overexpression of ECE-1 in cells that lack endogenous ECE activity reduces Aβ accumulation by up to 90%, and this effect is completely reversed by treatment of the cells with phosphoramidon. Additionally, we have shown that recombinant soluble ECE-1 is capable of hydrolyzing synthetic Aβ40 and Aβ42 in vitro at multiple sites, with a favorable kinetic profile. While several enzymes have been identified that can degrade Aβ in vitro , only neprilysin has thus far been reported to influence Aβ accumulation in the brains of knock-out mice. To examine the physiological role of ECE activity on Aβ accumulation in the brain we compared the amount of Aβ in wild-type and ECE-2 null mice. A significant elevation in both Aβ40 and Aβ42 was observed in the ECE-2 null animals compared to their wild-type littermates. These data provide direct evidence of a physiological role for this enzyme in limiting Aβ accumulation in the brain.
Acknowledgements: Supported by Smith Fellowships to C.E. and E.E., a Bursak Fellowship to E.E., and by the Mayo Foundation for Medical Education and Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号