首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify splicing factors in proximity of the 5' splice site (5'SS), we followed a crosslinking profile of site-specifically modified, photoreactive RNA substrates. Upon U4/U5/U6 snRNP addition, the 5'SS RNA crosslinks in an ATP-dependent manner to U6 snRNA, an unidentified protein p27, and the 100-kDa U5 snRNP protein, a human ortholog of an ATPase/RNA helicase yPrp28p. The 5'SS:hPrp28p crosslink maps to the highly conserved TAT motif in proximity of the ATP-binding site in hPrp28p. We propose that hPrp28p acts as a helicase to unwind the 5'SS:U1 snRNA duplex, and at the same time as a 5'SS translocase, which, upon NTP-dependent conformational change, positions the 5'SS for pairing with U6 snRNA within the spliceosome. This repositioning of the 5'SS takes place regardless of whether the 5'SS is originally duplexed with U1 snRNA.  相似文献   

2.
The splicing of nuclear pre-mRNAs is catalyzed by a large, multicomponent ribonucleoprotein complex termed the spliceosome. Elucidation of the molecular mechanism of splicing identified small nuclear RNAs (snRNAs) as important components of the spliceosome, which, by analogy to the self-splicing group II introns, are implicated in formation of the catalytic center. In particular, the 5' splice site (5'SS) and the branch site, which represent the two substrates for the first step of splicing, are first recognized by U1 and U2 snRNPs, respectively. This initial recognition of splice sites is responsible for the global definition of exons and introns, and represents the primary target for regulation of splicing. Subsequently, pairing interaction between the 5'SS and U1 snRNA is disrupted and replaced by a new interaction of the 5'SS with U6 snRNA. The 5'SS signal contains an invariant GU dinucleotide present at the 5' end of nearly all known introns, however, the mechanism by which the spliceosome recognizes this element is not known. We have identified and characterized a specific UV light-induced crosslink formed between the 5'SS RNA and hPrp8, a protein component of U5 snRNP in the spliceosome that is likely to reflect a specific recognition of the GU dinucleotide for splicing. Because recognition of the 5'SS must be linked to formation of the catalytic site, the identification of a specific and direct interaction between the 5'SS and Prp8 has significant implications for the role of this protein in the mechanism of mRNA splicing.  相似文献   

3.
A U5 snRNP protein, hPrp8, forms a UV-induced crosslink with the 5' splice site (5'SS) RNA within splicing complex B assembled in trans- as well as in cis-splicing reactions. Both yeast and human Prp8 interact with the 5'SS, branch site, polypyrimidine tract, and 3'SS during splicing. To begin to define functional domains in Prp8 we have mapped the site of the 5'SS crosslink within the hPrp8 protein. Immunoprecipitation analysis limited the site of crosslink to the C-terminal 5060-kDa segment of hPrp8. In addition, size comparison of the crosslink-containing peptides generated with different proteolytic reagents with the pattern of fragments predicted from the hPrp8 sequence allowed for mapping of the crosslink to a stretch of five amino acids in the C-terminal portion of hPrp8 (positions 1894-1898). The site of the 5'SS:hPrp8 crosslink falls within a segment spanning the previously defined polypyrimidine tract recognition domain in yPrp8, suggesting that an overlapping region of Prp8 may be involved both in the 5'SS and polypyrimidine tract recognition events. In the context of other known interactions of Prp8, these results suggest that this protein may participate in formation of the catalytic center of the spliceosome.  相似文献   

4.
In this study, we have used a genetic compensatory approach to examine the functional significance of the previously proposed interaction of spliced leader (SL) RNA with U5 small nuclear RNA (snRNA) (Dungan, J. D., Watkins, K. P., and Agabian, N. (1996) EMBO J. 15, 4016-4029; Xu, Y.-X., Ben Shlomo, H., and Michaeli, S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8473-8478) and the interaction of the SL RNA intron with U6 snRNA analogous to cis-splicing. Mutations were introduced at positions -4, -1, +1, +4, +5, and +7/+8 relative to the SL RNA 5' splice site that were proposed to interact with U5 and U6 snRNAs. All mutants exhibited altered splicing phenotypes compared with the parental strain, showing the importance of these intron and exon positions for trans-splicing. Surprisingly, mutation at invariant +1 position did not abolish splicing completely, unlike cis-splicing, but position +2 had the most severe effect on trans-splicing. Compensatory mutations were introduced in U5 and U6 snRNAs to examine whether the defects resulted from failure to interact with these snRNAs by base pairing. Suppression was observed only for positions +5 and +7/+8 with U5 compensatory mutations and for position +5 with a U6 compensatory mutation, supporting the existence of a base pair interaction of U5 and U6 with the SL RNA intron region. The failure to suppress the other SL RNA mutants by the U5 compensatory mutations suggests that another factor(s) interacts with these key SL RNA positions.  相似文献   

5.
U6 small nuclear RNA (U6 snRNA) is one of the spliceosomal RNAs essential for pre-mRNA splicing. Highly conserved region of U6 snRNA shows a structural similarity with the catalytic center of the negative strand of the satellite RNA of tobacco ring spot virus [(-)sTRSV], supporting the hypothesis that U6 snRNA has a catalytic role in pre-mRNA splicing. To test this hypothesis, we examined in vitro whether synthetic RNAs consisting of the sequence of the highly conserved region of U6 snRNA or various chimeric RNAs between the U6 region and the catalytic center of (-)sTRSV could cleave a substrate RNA that can partially base-pair with them and has a GU sequence between the pairing regions. Chimeric RNAs with 70 to 83% sequence identity with the conserved region of S. pombe U6 snRNA cleaved the substrate RNA at the 5' side of the GU sequence. In addition, we found that the highly conserved region of U6 snRNA is similar in structure to the catalytic core region of the group I self-splicing intron in cyanobacteria. These results support the hypothesis that U6 snRNA catalyzes the pre-mRNA splicing reaction and U6 snRNA may originate from the catalytic domain of an ancient self-splicing intron.  相似文献   

6.
C I Reich  R W VanHoy  G L Porter  J A Wise 《Cell》1992,69(7):1159-1169
U1 snRNA is an essential splicing factor known to base pair with 5' splice sites of premessenger RNAs. We demonstrate that pairing between the universally conserved CU just downstream from the 5' junction interaction region and the 3' splice site AG contributes to efficient splicing of Schizosaccharomyces pombe introns that typify the AG-dependent class described in mammals. Strains carrying mutations in the 3' AG of an artificial intron accumulate linear precursor, indicative of a first step block. Lariat formation is partially restored in these mutants by compensatory changes in nucleotides C7 and U8 of U1 snRNA. Consistent with a general role in fission yeast splicing, mutations at C7 are lethal, while U8 mutants are growth impaired and accumulate linear, unspliced precursor to U6 snRNA. U1 RNA-mediated recognition of the 3' splice site may have origins in analogous intramolecular interactions in an ancestral self-splicing RNA.  相似文献   

7.
J M Dungan  K P Watkins    N Agabian 《The EMBO journal》1996,15(15):4016-4029
The existence of the Trypanosoma brucei 5' splice site on a small RNA of uniform sequence (the spliced leader or SL RNA) has allowed us to characterize the RNAs with which it interacts in vivo by psoralen crosslinking treatment. Analysis of the most abundant crosslinks formed by the SL RNA allowed us previously to identify the spliced leader-associated (SLA) RNA. The role of this RNA in trans-splicing, as well as the possible existence of an analogous RNA interaction in cis-splicing, is unknown. We show here that the 5' splice site region of the SL RNA is also crosslinked in vivo to a second small RNA. Although it is very small and lacks a 5' trimethylguanosine (TMG) cap, the SLA2RNA possesses counterparts of the conserved U5 snRNA stem-loop 1 and internal loop 1 sequence elements, as well as a potential trypanosome snRNA core protein binding site; these combined features meet the phylogenetic definition of U5 snRNA. Like U5, the SLA2 RNA forms an RNP complex with the U4 and U6 RNAs, and interacts with the 5' splice site region via its putative loop 1 sequence. In a final analogy with U5, the SLA2 RNA is found crosslinked to a molecule identical to the free 5' exon splicing intermediate. These data present a compelling case for the SLA2 RNA not only as an active trans-spliceosomal component, but also for its identification as the trypanosome U5 structural homolog. The presence of a U5-like RNA in this ancient eukaryote establishes the universality of the spliceosomal RNA core components.  相似文献   

8.
A short 5' splice site RNA oligonucleotide (5'SS RNA oligo) undergoes both steps of splicing when a second RNA containing the 3' splice site region (3'SS RNA) is added in trans. This trans-splicing reaction displays the same 5' and 3' splice site sequence requirements as cis-splicing of full-length pre-mRNA. The analysis of RNA-snRNP complexes formed on each of the two splice site RNAs is consistent with the formation of partial complexes, which then associate to form the complete spliceosome. Specifically, U2 snRNP bound to the 3'SS RNA associates with U4/U5/U6 snRNP bound to the 5'SS RNA oligo. Thus, as expected, trans-splicing depends on the integrity of U2, U4, and U6 snRNAs. However, unlike cis-splicing, trans-splicing is enhanced when the 5' end of U1 snRNA is blocked or removed or when the U1 snRNP is depleted. Thus, the early regulatory requirement for U1 snRNP, which is essential in cis-splicing, is bypassed in this trans-splicing system. This simplified trans-splicing reaction offers a unique model system in which to study the mechanistic details of pre-mRNA splicing.  相似文献   

9.
T Tani  Y Takahashi    Y Ohshima 《Nucleic acids research》1992,20(12):2991-2996
U6 small nuclear RNA is one of the spliceosomal RNAs essential for pre-mRNA splicing. Discovery of mRNA-type introns in the highly conserved region of the U6 snRNA genes led to the hypothesis that U6 snRNA functions as a catalytic element during pre-mRNA splicing. The highly conserved region of U6 snRNA has a structural similarity with the catalytic domain of the negative strand of the satellite RNA of tobacco ring spot virus [(-)sTRSV], suggesting that the highly conserved region of U6 snRNA forms the catalytic center. We examined whether synthetic RNAs consisting of the sequence of the highly conserved region of U6 snRNA or various chimeric RNAs between the U6 region and the catalytic RNA of (-)sTRSV could cleave a substrate RNA that can partially base-pair with them and have a GU sequence. Chimeric RNAs with 70 to 83% sequence identity with the conserved region of S. pombe U6 snRNA cleaved the substrate RNA at the 5' side of the GU sequence, which is shared by the 5' end of an intron in a pre-mRNA. We found that the highly conserved region of U6 snRNA and the catalytic domain of (-)sTRSV are strikingly similar in structure to the catalytic core region of the group I self-splicing intron in cyanobacteria. These results suggest that U6 snRNA, (-)sTRSV and the group I self-splicing intron originated from a common ancestral RNA, and support the hypothesis that U6 snRNA catalyzes pre-mRNA splicing reaction.  相似文献   

10.
Specific recognition of the 5' splice site (5'SS) by the spliceosome components was studied using a simple in vitro system in which a short 5'SS RNA oligonucleotide specifically induces the assembly of snRNP particles into spliceosome-like complexes and actively participates in a trans-splicing reaction. Short-range cross-liking demonstrates that a U5 snRNP protein component, p220 (the human analogue of the yeast Prp8) specifically interacts with the invariant GU dinucleotide at the 5' end of the intron. The GU:p220 interaction can be detected in the functional splicing complex B. Although p220 has been known to contact several nucleotides around the 5' splice junction, the p220:GU dinucleotide interaction described here is remarkably specific. Consistent with the high conservation of the GU, even minor modifications of this element affect recognition of the 5'SS RNA by p220. Substitution of uridine at the GU with base analogues containing a large methyl or iodo group, but not a smaller flouro group at base position 5, interferes with association of 5'SS RNA with snRNP complexes and their functional participation in splicing.  相似文献   

11.
Human proteins 15.5K and hPrp31 are components of the major spliceosomal U4 snRNP and of the minor spliceosomal U4atac snRNP. The two proteins bind to related 5'-stem loops (5'SLs) of the U4 and U4atac snRNAs in a strictly sequential fashion. The primary binding 15.5K protein binds at K-turns that exhibit identical sequences in the two snRNAs. However, RNA sequences contacted by the secondary binding hPrp31 differ in U4 and U4atac snRNAs, and the mechanism by which hPrp31 achieves its dual specificity is presently unknown. We show by crystal structure analysis that the capping pentaloops of the U4 and U4atac 5'SLs adopt different structures in the ternary hPrp31-15.5K-snRNA complexes. In U4atac snRNA, a noncanonical base pair forms across the pentaloop, based on which the RNA establishes more intimate interactions with hPrp31 compared with U4 snRNA. Stacking of hPrp31-His270 on the noncanonical base pair at the base of the U4atac pentaloop recapitulates intramolecular stabilizing principles known from the UUCG and GNRA families of RNA tetraloops. Rational mutagenesis corroborated the importance of the noncanonical base pair and the U4atac-specific hPrp31-RNA interactions for complex stability. The more extensive hPrp31-U4atac snRNA interactions are in line with a higher stability of the U4atac compared with the U4-based ternary complex seen in gel-shift assays, which may explain how U4atac snRNA can compete with the more abundant U4 snRNA for the same protein partners in vivo.  相似文献   

12.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

13.
The U1 small nuclear ribonucleoprotein particle (snRNP)/5' splice site (5'SS) interaction in yeast is essential for the splicing process and depends on the formation of a short RNA duplex between the 5' arm of U1 snRNA and the 1st intronic nucleotides. This RNA/RNA interaction is characterized by the presence of a mismatch that occurs with almost all yeast introns and concerns nucleotides 4 on the pre-mRNA (a U) and 5 on U1 snRNA (a Psi). The latter nucleotide is well conserved from yeast to vertebrates, but its role in yeast and the significance of the associated mismatch in the U1 snRNA/5'SS interaction have never been fully explained. We report here that the presence of this mismatch is a determinant of stability that mainly affects the off rate of the interaction. To our knowledge this is the first report assigning a function to this noncanonical interaction. We also performed SELEX (systematic evolution of ligands by exponential enrichment) experiments by immunoprecipitating U1 snRNP and the associated RNA. The artificial phylogeny derived from these experiments allows the isolation of the selective pressure due to U1 snRNP binding on the 5'SS of yeast introns.  相似文献   

14.
B Séraphin  M Rosbash 《Gene》1989,82(1):145-151
In recent experiments we have used the power of yeast genetics to study U1 small nuclear RNA (snRNA): pre-messenger RNA (pre-mRNA) base pairing interactions [Séraphin et al. EMBO J. 7 (1988) 2533-2538]. Here we extend these observations to other potential U1 snRNA: pre-mRNA pairings. We show that several U1 snRNA mutants are viable. Using these U1 mutant strains we demonstrate further a base-pairing interaction between U1 snRNA position 3 and intron position 6. However, this interaction is only detected with a poor splicing substrate containing branchpoint mutations. These results provide information on the mechanism of 5' splice site-branch point interaction. We also propose several models which may explain why the sequence of the 5' end of the U1 snRNA is conserved among organisms as divergent as man and yeast.  相似文献   

15.
Suppressor U1 Snrnas in Drosophila   总被引:2,自引:0,他引:2       下载免费PDF全文
PCH. Lo  D. Roy    S. M. Mount 《Genetics》1994,138(2):365-378
Although the role of U1 small nuclear RNAs (snRNAs) in 5' splice site recognition is well established, suppressor U1 snRNAs active in intact multicellular animals have been lacking. Here we describe suppression of a 5' splice site mutation in the Drosophila melanogaster white gene (w(DR18)) by compensatory changes in U1 snRNA. Mutation of positions -1 and +6 of the 5' splice site of the second intron (ACG|GTGACT to ACC|GTGAGC) results in the accumulation of RNA retaining this 74-nucleotide intron in both transfected cells and transgenic flies. U1-3G, a suppressor U1 snRNA which restores basepairing at position +6 of the mutant intron, increases the ratio of spliced to unspliced w(DR18) RNA up to fivefold in transfected Schneider cells and increases eye pigmentation in w(DR18) flies. U1-9G, which targets position -1, suppresses w(DR18) in transfected cells less well. U1-3G,9G has the same effect as U1-3G although it accumulates to lower levels. Suppression of w(DR18) has revealed that the U1b embryonic variant (G134 to U) is active in Schneider cells and pupal eye discs. However, the combination of 9G with 134U leads to reduced accumulation of both U1b-9G and U1b-3G,9G, possibly because nucleotides 9 and 134 both participate in a potential long-range intramolecular base-pairing interaction. High levels of functional U1-3G suppressor reduce both viability and fertility in transformed flies. These results show that, despite the difficulties inherent in stably altering splice site selection in multicellular organisms, it is possible to obtain suppressor U1 snRNAs in flies.  相似文献   

16.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

17.
The kink-turn, a stem I-internal loop-stem II structure of the 5 ' stem-loop of U4 and U4atac small nuclear (sn) RNAs bound by 15.5K protein is required for binding of human Prp31 protein (hPrp31) during U4 and U4atac snRNP assembly. In box C/D snoRNPs a similar kink-turn with bound 15.5K protein is required for selective binding of proteins NOP56 and NOP58. Here we analyzed RNA structural requirements for association of hPrp31 with U4 snRNP in vitro by hydroxyl radical footprinting. hPrp31 induced protection of the terminal penta-loop, as well as of stems I and II flanking the kink-turn. Similar protection was found with U4/U6 snRNA duplex prebound with 15.5K protein. A detailed mutational analysis of the U4 snRNA elements by electrophoretic mobility shift analysis revealed that stem I could not be shortened, although it tolerated sequence alterations. However, introduction of a third Watson-Crick base pair into stem II significantly reduced hPrp31 binding. While stem I of U4atac snRNA showed relaxed binding requirements, its stem II requirements were likewise restricted to two base pairs. In contrast, as shown previously, stem II of the kink-turn motif in box C/D snoRNAs is comprised of three base pairs, and NOP56 and NOP58 require a G-C pair at the central position. This indicates that hPrp31 binding specificity is achieved by the recognition of the two base pair long stem II of the U4 and U4atac snRNAs and suggests how discrimination is achieved by RNA structural elements during assembly of U4/U6 and U4atac/U6atac snRNPs and box C/D snoRNPs.  相似文献   

18.
Conformational change within the spliceosome is required between the first catalytic step of pre-mRNA splicing, when the branch site attacks the 5' splice site (SS), and the second step, when the 5' exon attacks the 3'SS. Little is known, however, about repositioning of the reaction substrates during this transition. Whereas the 5'SS is positioned for the first step by pairing with the invariant U6 snRNA-ACAGAG site, we demonstrate that this pairing interaction must be disrupted to allow transition to the second step. We propose that removal of the branch structure from the catalytic center is in competition with binding of the 3'SS substrate for the second step. Changes in the relative occupancy of first and second step substrates at the catalytic center alter efficiency of the two steps of splicing, allowing use of suboptimal intron sequences and thereby altering substrate selectivity.  相似文献   

19.
We have introduced a single photochemical crosslinking reagent into specific sites in the central domain of U6 to identify the sites that are in close proximity to the pre-mRNA substrate. Four distinct U6 snRNAs were synthesized with a single 4-thiouridine (4-thioU) at positions 46, 51, 54, and 57, respectively. Synthetic U6 RNA containing the 4-thioU modifications can functionally reconstitute splicing activity in cell-free yeast splicing extracts depleted of endogenous U6 snRNA. Upon photoactivation with UV (>300 nm), 4-thioU at position 46 forms crosslinks to pre-mRNA near the 5' splice site at nt +4, +5, +6, and +7 in the intron, whereas 4-thioU at position 51 crosslinks to the pre-mRNA at positions -2, -1, +1, +2, +3, and at the invariant G in the lariat intermediate. All crosslinks are dependent on the presence of ATP and the splicing substrate. The two crosslinks to the pre-mRNA from position 46 and 51 of U6 can also occur in prp2 heat-inactivated yeast splicing extracts blocked immediately prior to the first chemical step. Significantly, the crosslink from position 51 can undergo subsequent splicing when the mutant extract is complemented with functional Prp2 protein in a chase experiment, indicating that the crosslink reflects a functional interaction that is maintained during the first step. The crosslink to lariat intermediate appears when the mutant spliceosomes are complemented with functional Prp2 protein added exogenously. This experiment is a paradigm for future studies in which different mutant extracts are used to establish the stage in assembly at which particular RNA-RNA interactions defined by unique crosslinks occur.  相似文献   

20.
B Sraphin  L Kretzner    M Rosbash 《The EMBO journal》1988,7(8):2533-2538
We analyzed the effects of suppressor mutations in the U1 snRNA (SNR19) gene from Saccharomyces cerevisiae on the splicing of mutant pre-mRNA substrates. The results indicate that pairing between U1 snRNA and the highly conserved position 5 (GTATGT) of the intron occurs early in spliceosome assembly in vitro. This pairing is important for efficient splicing both in vitro and in vivo. However, pairing at position 5 does not appear to influence 5' splice site selection in vivo, indicating that the previously described U1 snRNA:5' splice junction base pairing interaction is not sufficient to define the 5' cleavage site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号