首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The steady state kinetics of pig liver glucose-6-phosphate dehydrogenase is consistent with an ordered, sequential mechanism in which NADP is bound first and NADPH released last. Kia is 9.0 muM, Ka is 4.8 muM, and Kb is 36 muM. Glucosamine 6-phosphate, a substrate analogue and competitive inhibitor, is used to help rule out a possible random mechanism. ADP is seen to form a complex with the free form of the enzyme whereas ATP forms a complex with both the free and E-NADP forms of the enzyme. The KI for the E-ADP complex is 1.9 mM, while the Ki values for the E-ATP and E-NADP-ATP complexes are 7.2 and 4.5 mM, respectively.  相似文献   

3.
4.
5.
6.
7.
People with the variants of glucose-6-phosphate dehydrogenase (GPD) deficiency common in the southern Chinese (Canton, B(-)Chinese, and Hong Kong-Pokfulam) have a moderate shortening of red-cell survival but no anaemia when they are in the steady state. With a cross-transfusion technique, primaquine, nitrofurantoin, and large doses of aspirin were found to aggravate the haemolysis while sulphamethoxazole did so only in some people. Individual differences in drug metabolism may be the reason for this. Many commonly used drugs reported to accentuate haemolysis in GPD deficiency did not shorten red-cell survival.  相似文献   

8.
The aim of the present study was to investigate cortisol levels under basal conditions and in response to ACTH stimulation in male patients with glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. The study included 14 male controls and 12 patients with G-6-PD deficiency matched for age and race. Fasting blood samples were taken from all the subjects at rest, and 30, 60 and 120 min after the infusion of 0.25 mg of corticotropin for cortisol determination. The mean cortisol levels observed in the first hour after ACTH stimulation in the G-6-PD-deficient patients were significantly (p = 0.03) lower than in the control group. No significant differences were observed between patients and controls at rest, and in the second hour after stimulation. These data suggest that, in the adrenals, G-6-PD plays a role in the initial phase of cortisol production. However, 1 h after ACTH stimulation, G-6-PD probably is no longer rate limiting in the production of cortisol.  相似文献   

9.
Hemolysis in glucose-6-phosphate dehydrogenase deficiency   总被引:1,自引:0,他引:1  
  相似文献   

10.
Pure glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) is transformed into 'hyperanodic forms' when incubated at acidic pH and in the presence of NADP+ with excess of glucose-6-phosphate or with some 'NADP+ modifying proteins' purified from the same cells. The enzyme hyperanodic forms exhibit low isoelectric point, altered kinetic properties and high lability to heat, urea, and proteolysis. Differences between hyperanodic and native forms of glucose-6-phosphate dehydrogenase are also noted by microcomplement fixation analysis, ultraviolet absorbance difference spectrum and fluorescence emission spectrum. Drastic denaturation of the enzyme by urea and acid treatment did not suppress the difference of isoelectric point between native and hyperanodic forms of glucose-6-phosphate dehydrogenase. From our data we suggest that the conversion into hyperanodic forms could be due to the covalent binding on the enzyme of a degradation product of the pyridine nucleotide coenzyme. This modification could constitute a physiological transient step toward the definitive degradation of the enzyme.  相似文献   

11.
12.
13.
Thessaly variant of glucose-6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

14.
Summary Characterization of partially purified eryrhrocyte G-6-PD from 50 enzymedeficient males in 45 unrelated Thai families revealed 6 enzyme variants. Thirty-five subjects in 31 families had G-6-PD variant with normal electrophoretic mobility, slightly low Km G-6-P, normal substrate-analog utilization, normal pH-optimum curve, and slightly increased heat stability. This enzyme variant is called G-6-PD Mahidol.Six subjects had enzyme with fast electrophoretic mobility (106–108% of normal), low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve, and slightly low to normal heat stability. This variant was identical to G-6-PD Canton.Five subjects had G-6-PD with fast electrophoretic mobility (103–106% of normal), low Km G-6-P, very high substrate-analog utilization except for DPN which it did not use as cofactor, markedly biphasic pH-optimum curve and very low heat stability. This variant is called G-6-PD Union (Thai).Two brothers had G-6-PD with normal electrophoretic mobility, low Km G-6-P, slightly increased substrate-analog utilization, biphasic pH-optimum curve and low heat stability. This variant is designated G-6-PD Siriraj.G-6-PD from one patient had slightly fast electrophoretic mobility, increased substrateanalog utilization, especially of DPN, and very low thermal stability. It is called G-6-PD Kan.One subject had G-6-PD with normal electrophoretic mobility, Km G-6-P, pH-optimum curve and heat stability, and increased substrate-analog utilization. This G-6-PD variant is named G-6-PD Anant.G-6-PD Mahidol is far more common than any other known variants in Thailand.
Zusammenfassung Eine Charakterisierung von teilweise gereinigtem Erythrocyten-G-6-PD von 50 Männern mit Enzym-Defekt aus 45 nicht miteinander verwandten Thai-Familien ergab 6 Enzym-Varianten. 35 Personen in 31 Familien hatten eine G-6-PD-Variante mit normaler elektrophoretischer Wanderungsgeschwindigkeit, einen leicht verminderten G-6-P-Km-Wert, einer normalen Substratanalog-Verwertung, einer normalen pH-Optimum-Kurve und einer leicht erhöhten Hitze-Stabilität. Diese Enzym-Variante wurde G-6-PD Mahidol genannt.Sechs Personen hatten ein Enzym mit rascher elektrophoretischer Wanderung (106–108% der Norm), niedrigem Km für G-6-P, leicht erhöhter Substrat-Verwertung, einer biphasischen pH-Optimum-Kurve und normaler bis leicht erniedrigter Hitzestabilität. Diese Variante ist identisch mit G-6-PD Canton.Fünt Personen hatten G-6-PD mit rascher elektrophoretischer Wanderung (103–106%), niedrigem Km G-6-P, sehr hoher Substratanalog-Verwertung—mit Ausnahme von DPN, das nicht als Cofactor wirkte—, einer stark biphasischen pH-Optimum-Kurve und sehr geringer Hitze-Stabilität. Diese Variante wurde als G-6-PD Union (Thai) bezeichnet.Zwei Brüder hatten ein G-6-PD mit normaler elektrophoretischer Wanderung, niedrigem Km G-6-P, leicht erhöhter Substratanalog-Verwertung, einer biphasischen pH-Optimum-Kurve und geringer Hitze-Stabilität. Diese Variante erhielt den Namen G-6-PD Siriraj.G-6-PD eines Patienten hatte eine leicht erhöhte elektrophoretische Wanderungsgeschwindigkeit, eine erhöhte Substratanalog-Verwertung, besonders für DPN, und eine sehr geringe Hitze-Stabilität (G-6-PD Kan).Eine Person zeigte ein G-6-PD mit normaler elektrophoretischer Wanderungsgeschwindigkeit, Km G-6-P pH-Optimum-Kurve und Hitze-Stabilität. Nur die Substratanalog-Verwertung war erhöht. Diese Variante wurde G-6-PD Anant gennant.G-6-PD Mahidol ist die bei weitem häufigste Variante in Thailand.


This investigation received financial support from the World Health Organization.  相似文献   

15.
The activity of glucose-6-phosphate dehydrogenase (G6PD) was measured in bone marrow, spleen, lung, liver, kidney, adipose tissue, brain, heart, muscle, and in the erythroid cell line of rabbit. In tissues, the activity ranged from 6.87 to 0.09 U/g wet tissue, found in bone marrow and muscles, respectively, whereas in the erythroid cell line it ranged from 14.3 to 2.4 U/g cells for erythroblasts and erythrocytes, respectively. The electrophoretic patterns of the tissue crude extracts showed an identical set of three activity bands, and the immunotitration curves obtained with rat antirabbit erythrocyte G6PD antibodies shared the same equivalence point. The enzyme, purified to homogeneity from different tissues, showed no significant differences among the Km values for NADP and G6P. The results give a picture of the variability of the G6PD activity in rabbit tissues and suggest the presence of the same enzyme molecule in each tissue.  相似文献   

16.
It has been suggested by some authors that during amphibian development, due to the higher glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity compared to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.43), 6-phosphogluconate could accumulate in the embryo tissues and regulate the channelling of glucose-6-phosphate into glycolysis. Here, on the base of the specific activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glucose-6-phosphate isomerase (EC 5.3.1.9) found in the embryos of Bufo bufo during development, it is discussed whether 6-phosphogluconate can accumulate and play a regulative role on glucose-6-phosphate metabolism in the anuran embryo.  相似文献   

17.
18.
19.
20.
Summary The lower Vmax of 6PGDH with respect to G6PDH and its higher sensitivity to inhibition by NADPH, suggest the existence of an imbalance between the two dehydrogenases of the pentose phosphate pathway in rat liver. Possible modulators of these activities, particularly in relation with the inhibition by NADPH in physiological conditions, have been investigated. The results suggest that in both cases the inhibition by NADPH is strictly isosteric and that the relative affinities for the reduced and oxidized forms of the pyridine nucleotide are unaffected by glutathion, the intermediates of the pentose phosphate shunt or some divalent ions.Abbreviations G6PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - 6PGDH 6-phosphogluconate dehydrogenase (EC 1.1.1.44) On leave from the Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号