首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was known previously that 1) the relA gene of Escherichia coli encodes an enzyme capable of guanosine 3',5'-bispyrophosphate (ppGpp) synthesis, 2) an uncharacterized source of ppGpp synthesis exists in relA null strains, and 3) cellular degradation of ppGpp is mainly due to a manganese-dependent ppGpp 3'-pyrophosphohydrolase encoded by the spoT gene. Here, the effects of spoT gene insertions and deletions are compared with analogous alterations in neighboring genes in the spo operon and found to be lethal in relA+ strains as well as slower growing in relAl backgrounds than delta relA hosts. Cells with null alleles in both the relA and spoT genes are found no longer to accumulate ppGpp after glucose exhaustion or after chelation of manganese ions by picolinic acid addition; the inability to form ppGpp is reversed by a minimal spoT gene on a multicopy plasmid. Strains apparently lacking ppGpp show a complex phenotype including auxotrophy for several amino acids and morphological alterations. We propose that the SpoT protein can either catalyze or control the alternative pathway of ppGpp synthesis in addition to its known role as a (p)ppGpp 3'-pyrophosphohydrolase. We favor the possibility that the SpoT protein is a bifunctional enzyme capable of catalyzing either ppGpp synthesis or degradation.  相似文献   

2.
Cells of Escherichia coli which enter a phase of starvation for Pi induce the synthesis of the nucleotide guanosine 3',5'-bispyrophosphate (ppGpp). This induction is relA independent but depends on the spoT gene product. A mutant unable to produce ppGpp is impaired in the expression of two genes which belong to the pho regulon, a defect which is dependent on the product of spoT. We suggest that ppGpp is essential for the proper induction of the genes which belong to the pho regulon.  相似文献   

3.
The relA gene of Escherichia coli encodes guanosine 3',5'-bispyrophosphate (ppGpp) synthetase I, a ribosome-associated enzyme that is activated during amino acid starvation. The stringent response is thought to be mediated by ppGpp. Mutations in relA are known to result in pleiotropic phenotypes. We now report that three different relA mutant alleles, relA1, relA2, and relA251::kan, conferred temperature-sensitive phenotypes, as demonstrated by reduced plating efficiencies on nutrient agar (Difco) or on Davis minimal agar (Difco) at temperatures above 41 degrees C. The relA-mediated temperature sensitivity was osmoremedial and could be completely suppressed, for example, by the addition of NaCl to the medium at a concentration of 0.3 M. The temperature sensitivities of the relA mutants were associated with decreased thermotolerance; e.g., relA mutants lost viability at 42 degrees C, a temperature that is normally nonlethal. The spoT gene encodes a bifunctional enzyme possessing ppGpp synthetase and ppGpp pyrophosphohydrolase activities. The introduction of the spoT207::cat allele into a strain bearing the relA251::kan mutation completely abolished ppGpp synthesis. This ppGpp null mutant was even more temperature sensitive than the strain carrying the relA251::kan mutation alone. The relA-mediated thermosensitivity was suppressed by certain mutant alleles of rpoB (encoding the beta subunit of RNA polymerase) and spoT that have been previously reported to suppress other phenotypic characteristics conferred by relA mutations. Collectively, these results suggest that ppGpp may be required in some way for the expression of genes involved in thermotolerance.  相似文献   

4.
D Avarbock  J Salem  L S Li  Z M Wang  H Rubin 《Gene》1999,233(1-2):261-269
A 2.2kb relA/spoT homologue was isolated from Mycobacterium tuberculosis (Mtb) genomic DNA by PCR-amplification. The Mtb gene encodes a protein of 738 amino acid residues, and is flanked upstream by an ORF that is highly similar to the apt gene, and downstream by an ORF that is highly similar to the cypH gene. This dual function Mtb homologue belongs to the relA/spoT family of genes that mediate the stringent response by regulating the synthesis and degradation of guanosine 3',5'-bis(diphosphate) (ppGpp) and pppGpp. In vitro biochemical data indicate that purified RelMtb is a ribosome- and tRNA-independent ATP:GTP/GDP/ITP 3'-pyrophosphoryltransferase. Additionally, purified RelMtb is an Mn2+-dependent, ribosome and tRNA-independent, (p)ppGpp 3'-pyrophosphohydrolase. These reactions were also assessed in vivo in E. coli deleted in both the relA and spoT genes, which generates a (p)ppGpp0 phenotype. RelMtb can suppress this phenotype and can generate more (p)ppGpp than relA in the wild type E. coli control.  相似文献   

5.
We examined the functional attributes of a gene encountered by sequencing the streptokinase gene region of Streptococcus equisimilis H46A. This gene, originally called rel, here termed relS. equisimilis, is homologous to two related Escherichia coli genes, spoT and relA, that function in the metabolism of guanosine 5',3'-polyphosphates [(p)ppGpp]. Studies with a variety of E. coli mutants led us to deduce that the highly expressed rel S. equisimilis gene encodes a strong (p)ppGppase and a weaker (p)ppGpp synthetic activity, much like the spoT gene, with a net effect favoring degradation and no complementation of the absence of the relA gene. We verified that the Rel S. equisimilis protein, purified from an E. coli relA spoT double mutant, catalyzed a manganese-activated (p)ppGpp 3'-pyrophosphohydrolase reaction similar to that of the SpoT enzyme. This Rel S. equisimilis protein preparation also weakly catalyzed a ribosome-independent synthesis of (p)ppGpp by an ATP to GTP 3'-pyrophosphoryltransferase reaction when degradation was restricted by the absence of manganese ions. An analogous activity has been deduced for the SpoT protein from genetic evidence. In addition, the Rel S. equisimilis protein displays immunological cross-reactivity with polyclonal antibodies specific for SpoT but not for RelA. Despite assignment of rel S. equisimilis gene function in E. coli as being similar to that of the native spoT gene, disruptions of rel S. equisimilis in S. equisimilis abolish the parental (p)ppGpp accumulation response to amino acid starvation in a manner expected for relA mutants rather than spoT mutants.  相似文献   

6.
A carbon starvation-responding lac fusion of the marine Vibrio sp. strain S14 was used as a reporter strain in order to identify genes critical in the regulation of the carbon starvation response. Interestingly, sequence data together with an altered phenotype with respect to the accumulation of guanosine 3',5'-bispyrophosphate (ppGpp) imply that one of the genes (csrS) identified by this approach is an Escherichia coli spoT equivalent. Complementary data suggest that the function encoded by the csrS gene is essential for the successful development of starvation and stress resistance.  相似文献   

7.
8.
M Kalman  H Murphy  M Cashel 《Gene》1992,110(1):95-99
A gene is identified in the Escherichia coli K-12 spo operon as recG. Previously identified genes in the spo operon were spoS, alias rpoZ, encoding the omega (omega) subunit of RNA polymerase, as well as the spoT gene encoding the major cellular source of guanosine 3',5'-bispyrophosphate hydrolase activity. The gene order within the spo operon is: spoS (rpoZ), spoT, spoU, recG. A convergent gltS gene is present beyond the spo operon. Mutants bearing recG deletion-insertion alleles display mild sensitivities to both ultraviolet irradiation and to mitomycin C, which is expected to be due to a known recG insertion allele. Deletion-insertion mutations in upstream operon genes (spoT and spoU) show polar effects on these assays of recG function. The deduced 693-amino acid (aa) RecG sequence shows a weak, but significant, relatedness to aa sequence motifs previously reported for putative helicases involved in replication, recombination, and DNA repair.  相似文献   

9.
Overexpression of the relA gene in Escherichia coli   总被引:21,自引:0,他引:21  
  相似文献   

10.
The most widely studied "relaxed" mutant of the relA locus, the relA1 allele, is shown here to consist of an IS2 insertion between the 85th and 86th codons of the otherwise wild-type relA structural gene, which normally encodes a 743-amino acid (84 kDa) protein. The RelA protein is a ribosome-dependent ATP:GTP (GDP) pyrophosphoryltransferase that is activated during the stringent response to amino acid starvation and thereby occasions the accumulation of guanosine 3',5'-bispyrophosphate (ppGpp). We propose that the IS2 insertion functionally splits the RelA protein into two (alpha and beta) peptide fragments which can complement each other in trans to yield residual ppGpp synthetic activity; neither fragment shows this activity when expressed alone. Cell strains with a single copy relA null allele show physiological behavior that is much the same as relA1 mutant strains. Both relA1 and relA null strains accumulate ppGpp during glucose starvation and do not accumulate ppGpp during the stringent response. The presence of ppGpp in verifiable relA null strains is interpreted as unequivocal evidence for an alternate route of ppGpp synthesis that exists in addition to the relA-dependent reaction.  相似文献   

11.
A PCR-amplified DNA fragment of the relA gene from genomic Bacillus subtilis DNA was used to isolate the entire relA / spoT homologue and two adjacent open reading frames (ORFs) from a λ ZAP Express library. The relA gene, which encodes a protein of 734 amino acid residues (aa), is flanked by an ORF (170 aa) that shares high similarity to adenine phosphoribosyltransferase genes ( apt ), and downstream by an ORF (131 aa) of unknown function. This genetic organization is similar to that in Streptomyces coelicolor A3(2) and Streptococcus equismilis H46A. relA shows significant similarity to the Escherichia coli relA and spoT genes, which are responsible for the synthesis and degradation of the highly phosphorylated guanosine nucleotides (p)ppGpp, triggering the stringent response. Deletion of the relA gene generated a (p)ppGpp0 phenotype that demonstrated its essential role in the response to amino acid deprivation and resulted in impaired/lowered induction of proteins involved in stress response as well as amino acid biosynthesis, as judged by two-dimensional gel electrophoresis. The same effects of impaired induction of some σB-independent proteins could also be shown in a sigB/relA double mutant, supporting the role of relA in derepression/induction of catabolic and anabolic genes during stringent response.  相似文献   

12.
13.
Arthrofactin is a biosurfactant produced by Pseudomonas sp. MIS38. We have reported that transposon insertion into spoT (spoT::Tn5) causes moderate accumulation of guanosine 3',5'-bispyrophosphate (ppGpp) and abrogates arthrofactin production. To analyze the linkage of SpoT function and ablation of arthrofactin production, we examined the spoT::Tn5 mutation. The results showed that spoT::Tn5 is not a null mutation, but encodes separate segments of SpoT. Deletion of the 3' region of spoT increased the level of arthrofactin production, suggesting that the C-terminal region of SpoT plays a suppressive role. We evaluated the expression of a distinct segment of SpoT. Forced expression of the C-terminal region that contains the ACT domain resulted in the accumulation of ppGpp and abrogated arthrofactin production. Expression of the C-terminal segment also reduced MIS38 swarming and resulted in extensive biofilm formation, which constitutes the phenocopy of the spoT::Tn5 mutant.  相似文献   

14.
Characterization of the spoT gene of Escherichia coli   总被引:13,自引:0,他引:13  
  相似文献   

15.
The two promoters of Escherichia coli trxA gene were separately cloned into pKO100 as well as pJEL170. Galactokinase expression in cells containing the pKO100 derivatives was found to be negatively correlated with growth rate and was 6- to 20-fold higher in stationary cultures than in exponential cultures. The expression of trxA-galK was induced by amino acid starvation in a RelA(+) strain but not in an isogenic Rel(-) strain indicating that the control involves guanosine 3',5'-bispyrophosphate (ppGpp). RpoS, which appears to be essential for expression of most stationary phase expressed genes, is not required for trxA expression. Increased expression of relA, which increases ppGpp concentration, increases trxA expression.  相似文献   

16.
We have isolated five specialized transducing lambda bacteriophages (lambda dpyrE spoT) carrying the pyrE and spoT genes of Escherichia coli. A fragment from one of these phages was used as the source of DNA to clone the spoT and pyrE genes on a multicopy plasmid, pBR322. Insertions and deletions in this plasmid were obtained. These plasmids were used to transform a minicell-producing strain, and the gene products synthesized were determined. Our experiments demonstrate that the spoT and pyrE genes are separated by about 4 magadaltons and suggest that the spoT gene product is a protein whose molecular weight is 80,000. The strain in which the spoT+ allele is carried on a plasmid produced nine times more spoT gene activity than a normal spoT+ strain when assayed in crude extracts. This strain was used to prepare partially purified gene product, guanosine 5'-diphosphate, 3'-diphosphate pyrophosphatase. The enzyme has the following characteristics. (i) It hydrolyzes pyrophosphate from the 5'-pyrophosphate of guanosine 5'-diphosphate, 3'-diphosphate, yielding GDP and pyrophosphate. (ii) Its activity is strongly stimulated by Mn2+ and slightly stimulated by salt. (iii) Its activity is inhibited by uncharged tRNA. There are also two additional activities in the cell extract which degrade guanosine in 5'-diphosphate, 3'-diphosphate in vitro but which are not specified by the spoT gene.  相似文献   

17.
An osmosensitive mutant of Escherichia coli was isolated and shown to harbor two mutations that were together necessary for osmosensitivity. One (ossB) was an insertion mutation in the gltBD operon, which encodes the enzyme glutamate synthase (GOGAT), involved in ammonia assimilation and L-glutamate biosynthesis. The other (ossA) was in the fnr gene, encoding the regulator protein FNR for anaerobic gene expression. Several missense or deletion mutations in fnr and gltBD behaved like ossA and ossB, respectively, in conferring osmosensitivity. A mutation affecting the DNA-binding domain of FNR was recessive to fnr+ with respect to the osmotolerance phenotype but was dominant-negative for its effect on expression of genes in anaerobic respiration. Our results may most simply be interpreted as suggesting the requirement for monomeric FNR during aerobic growth of E. coli in high-osmolarity media, presumably for L-glutamate accumulation via the GOGAT-independent pathway (catalyzed by glutamate dehydrogenase [GDH]), but the mechanism of FNR action is not known. We also found that the spoT gene (encoding guanosine 3',5'-bispyrophosphate [ppGpp] synthetase II/ppGpp-3' pyrophosphohydrolase), in multiple copies, overcomes the defect in NH4+ assimilation associated with GOGAT deficiency and thereby suppresses osmosensitivity in gltBD fnr strains. Enhancement of GDH activity in these derivatives appears to be responsible for the observed suppression. Its likely physiological relevance was established by the demonstration that growth of gltBD mutants (that are haploid for spoT+) on moderately low [NH4+] was restored with the use of C sources poorer than glucose in the medium. Our results raise the possibility that SpoT-mediated accumulation of ppGpp during C-limited growth leads to GDH activation and that the latter enzyme plays an important role in N assimilation in situ hitherto unrecognized from studies on laboratory-grown cultures.  相似文献   

18.
RelA and SpoT of Gram-negative organisms critically regulate cellular levels of (p)ppGpp. Here, we have dissected the spoT gene function of the cholera pathogen Vibrio cholerae by extensive genetic analysis. Unlike Escherichia coli , V. cholerae Δ relA Δ spoT cells accumulated (p)ppGpp upon fatty acid or glucose starvation. The result strongly suggests RelA-SpoT-independent (p)ppGpp synthesis in V. cholerae . By repeated subculturing of a V. cholerae Δ relA Δ spoT mutant, a suppressor strain with (p)ppGpp0 phenotype was isolated. Bioinformatics analysis of V. cholerae whole genome sequence allowed identification of a hypothetical gene ( VC1224 ), which codes for a small protein (∼29 kDa) with a (p)ppGpp synthetase domain and the gene is highly conserved in vibrios; hence it has been named relV . Using E. coli Δ relA or Δ relA Δ spoT mutant we showed that relV indeed codes for a novel (p)ppGpp synthetase. Further analysis indicated that relV gene of the suppressor strain carries a point mutation at nucleotide position 676 of its coding region (Δ relA Δ spoT relV676 ), which seems to be responsible for the (p)ppGpp0 phenotype. Analysis of a V. cholerae Δ relA Δ spoT Δ relV triple mutant confirmed that apart from canonical relA and spoT genes, relV is a novel gene in V. cholerae responsible for (p)ppGpp synthesis.  相似文献   

19.
20.
Addition of divalent ion chelating agents picolinic acid, 1,10-phenanthroline, or quinoline-2-carboxylic acid to wild type, relA, or relX, but not spoT strains of Escherichia coli increases the levels of guanosine 5'-diphosphate 3'-diphosphate (ppGpp). Poorly chelating analogs of these agents and a larger and more highly charged chelating agent, ethylene glycol bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid are ineffective. Mn2+ reverses the increase in ppGpp. The increase in ppGpp in wild type cells can be explained by an inhibition of degradation. In spoT cells the response is more complex; ppGpp does not increase although degradation is completely inhibited. The lack of increase in spoT cells suggests a role for spoT in synthesis of ppGpp in addition to its known role in degradation. Growth of both spoT+ and spoT cells is inhibited following chelator addition. This suggests that growth inhibition is through a mechanism not directly involving ppGpp. The results of this study provide evidence in intact cells for a role for Mn2+ and the spoT gene product in ppGpp degradation, and provide further evidence for an involvement of spoT and possibly divalent ions in ppGpp synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号