首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the distribution of RNA nucleotidyltransferases from the family that includes poly(A) polymerases (PAP) and tRNA nucleotidyltransferases (TNT) in 43 bacterial species. Genes of several bacterial species encode only one member of the nucleotidyltransferase superfamily (NTSF), and if that protein functions as a TNT, those organisms may not contain a poly(A) polymerase I like that of Escherichia coli. The genomes of several of the species examined encode more than one member of the nucleotidyltransferase superfamily. The function of some of those proteins is known, but in most cases no biochemical activity has been assigned to the NTSF. The NTSF protein sequences were used to construct an unrooted phylogenetic tree. To learn more about the function of the NTSFs in species whose genomes encode more than one, we have examined Bacillus halodurans. We have demonstrated that B. halodurans adds poly(A) tails to the 3' ends of RNAs in vivo. We have shown that the genes for both of the NTSFs encoded by the B. halodurans genome are transcribed in vivo. We have cloned, overexpressed, and purified the two NTSFs and have shown that neither functions as poly(A) polymerase in vitro. Rather, the two proteins function as tRNA nucleotidyltransferases, and our data suggest that, like some of the deep branching bacterial species previously studied by others, B. halodurans possesses separate CC- and A-adding tRNA nucleotidyltransferases. These observations raise the interesting question of the identity of the enzyme responsible for RNA polyadenylation in Bacillus.  相似文献   

2.
A specific cytidine-cytidine-adenosine (CCA) sequence is required at the 3′-terminus of all functional tRNAs. This sequence is added during tRNA maturation or repair by tRNA nucleotidyltransferase enzymes. While most eukaryotes have a single enzyme responsible for CCA addition, some bacteria have separate CC- and A-adding activities. The fungus, Schizosaccharomyces pombe, has two genes (cca1 and cca2) that are thought, based on predicted amino acid sequences, to encode tRNA nucleotidyltransferases. Here, we show that both genes together are required to complement a Saccharomyces cerevisiae strain bearing a null mutation in the single gene encoding its tRNA nucleotidyltransferase. Using enzyme assays we show further that the purified S. pombe cca1 gene product specifically adds two cytidine residues to a tRNA substrate lacking this sequence while the cca2 gene product specifically adds the terminal adenosine residue thereby completing the CCA sequence. These data indicate that S. pombe represents the first eukaryote known to have separate CC- and A-adding activities for tRNA maturation and repair. In addition, we propose that a novel structural change in a tRNA nucleotidyltransferase is responsible for defining a CC-adding enzyme.  相似文献   

3.
4.
5.
The 3'-terminal CCA sequence of tRNA is faithfully constructed and repaired by the CCA-adding enzyme (ATP(CTP):tRNA nucleotidyltransferase) using CTP and ATP as substrates but no nucleic acid template. Until recently, all CCA-adding enzymes from all three kingdoms appeared to be composed of a single kind of polypeptide with dual specificity for adding both CTP and ATP; however, we recently found that in Aquifex aeolicus, which lies near the deepest root of the eubacterial 16 S rRNA-based phylogenetic tree, CCA addition represents a collaboration between closely related CC-adding and A-adding enzymes (Tomita, K. and Weiner, A. M. (2001) Science 294, 1334-1336). Here we show that in Synechocystis sp. and Deinococcus radiodurans, as in A. aeolicus, CCA is added by homologous CC- and A-adding enzymes. We also find that the eubacterial CCA-, CC-, and A-adding enzymes, as well as the related eubacterial poly(A) polymerases, each fall into phylogenetically distinct groups derived from a common ancestor. Intriguingly, the Thermatoga maritima CCA-adding enzyme groups with the A-adding enzymes, suggesting that these distinct tRNA nucleotidyltransferase activities can intraconvert over evolutionary time.  相似文献   

6.
There has been increased interest in bacterial polyadenylation with the recent demonstration that 3′ poly(A) tails are involved in RNA degradation. Poly(A) polymerase I (PAP I) of Escherichia coli is a member of the nucleotidyltransferase (Ntr) family that includes the functionally related tRNA CCA-adding enzymes. Thirty members of the Ntr family were detected in a search of the current database of eubacterial genomic sequences. Gram-negative organisms from the β and γ subdivisions of the purple bacteria have two genes encoding putative Ntr proteins, and it was possible to predict their activities as either PAP or CCA adding by sequence comparisons with the E. coli homologues. Prediction of the functions of proteins encoded by the genes from more distantly related bacteria was not reliable. The Bacillus subtilis papS gene encodes a protein that was predicted to have PAP activity. We have overexpressed and characterized this protein, demonstrating that it is a tRNA nucleotidyltransferase. We suggest that the papS gene should be renamed cca, following the notation for its E. coli counterpart. The available evidence indicates that cca is the only gene encoding an Ntr protein, despite previous suggestions that B. subtilis has a PAP similar to E. coli PAP I. Thus, the activity involved in RNA 3′ polyadenylation in the gram-positive bacteria apparently resides in an enzyme distinct from its counterpart in gram-negative bacteria.  相似文献   

7.
8.
A protein containing a nucleotidyltransferase motif characteristic of poly(A) polymerases has been proposed to polyadenylate RNA in Streptomyces coelicolor (P. Bralley and G. H. Jones, Mol. Microbiol. 40:1155-1164, 2001). We show that this protein lacks poly(A) polymerase activity and is instead a tRNA nucleotidyltransferase that repairs CCA ends of tRNAs. In contrast, a Streptomyces coelicolor polynucleotide phosphorylase homologue that exhibits polyadenylation activity may account for the poly(A) tails found in this organism.  相似文献   

9.
G Martin  W Keller 《The EMBO journal》1996,15(10):2593-2603
We have tested deletion and substitution mutants of bovine poly(A) polymerase, and have identified a small region that overlaps with a nuclear localization signal and binds to the RNA primer. Systematic mutagenesis of carboxylic amino acids led to the identification of three aspartates that are essential for catalysis. Sequence and secondary structure comparisons of regions surrounding these aspartates with sequences of other polymerases revealed a significant homology to the palm structure of DNA polymerase beta, terminal deoxynucleotidyltransferase and DNA polymerase IV of Saccharomyces cerevisiae, all members of the family X of polymerases. This homology extends as far as cca: tRNA nucleotidyltransferase and streptomycin adenylyltransferase, an antibiotic resistance factor.  相似文献   

10.
The Saccharomyces cerevisiae Trf4 and Trf5 proteins are members of a distinct family of eukaryotic DNA polymerase beta-like nucleotidyltransferases, and a template-dependent DNA polymerase activity has been reported for Trf4. To define the nucleotidyltransferase activities associated with Trf4 and Tr5, we purified these proteins from yeast cells and show that whereas both proteins exhibit a robust poly(A) polymerase activity, neither of them shows any evidence of a DNA polymerase activity. The poly(A) polymerase activity, as determined for Trf4, is strictly Mn2+ dependent and highly ATP specific, incorporating AMP onto the free 3'-hydroxyl end of an RNA primer. Unlike the related poly(A) polymerases from other eukaryotes, which are located in the cytoplasm and regulate the stability and translation efficiency of specific mRNAs, the Trf4 and Trf5 proteins are nuclear, and a multiprotein complex associated with Trf4 has been recently shown to polyadenylate a variety of misfolded or inappropriately expressed RNAs which activate their degradation by the exosome. To account for the effects of Trf4/Trf5 proteins on the various aspects of DNA metabolism, including chromosome condensation, DNA replication, and sister chromatid cohesion, we suggest an additional and essential role for the Trf4 and Trf5 protein complexes in generating functional mRNA poly(A) tails in the nucleus.  相似文献   

11.

Background  

The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A) polymerase I (PAP). As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme). Therefore, it was assumed that Hfq might not only influence the poly(A) polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme.  相似文献   

12.
13.
The 3'-terminal tRNA-like structure of the tobacco mosaic virus RNA interacts with ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli or yeast in much the same manner as do tRNAs. Primary sites of interaction cluster near the 3' end and in the loop proposed to be analogous to the psi-loop of a tRNA. Some modified bases in the tRNA-like structure inhibit interaction with nucleotidyltransferase, yet the analogous bases in a tRNA do not. The location of some of these nucleotides within the analog to the psi-loop suggests that this structure differs slightly from its counterpart in a tRNA. The location of other such bases in the helical stem near the 3' end can be explained if the pseudoknot is disrupted by these modified bases or if the tertiary structure of the RNA is altered in the enzyme-RNA complex. A partially denatured secondary structure that persists on denaturing gels is proposed.  相似文献   

14.
In all mature tRNAs, the 3'-terminal CCA sequence is synthesized or repaired by a template-independent nucleotidyltransferase (ATP(CTP):tRNA nucleotidyltransferase; EC 2.7.7.25). The Escherichia coli enzyme comprises two domains: an N-terminal domain containing the nucleotidyltransferase activity and an uncharacterized C-terminal HD domain. The HD motif defines a superfamily of metal-dependent phosphohydrolases that includes a variety of uncharacterized proteins and domains associated with nucleotidyltransferases and helicases from bacteria, archaea, and eukaryotes. The C-terminal HD domain in E. coli tRNA nucleotidyltransferase demonstrated Ni(2+)-dependent phosphatase activity toward pyrophosphate, canonical 5'-nucleoside tri- and diphosphates, NADP, and 2'-AMP. Assays with phosphodiesterase substrates revealed surprising metal-independent phosphodiesterase activity toward 2',3'-cAMP, -cGMP, and -cCMP. Without metal or in the presence of Mg(2+), the tRNA nucleotidyltransferase hydrolyzed 2',3'-cyclic substrates with the formation of 2'-nucleotides, whereas in the presence of Ni(2+), the protein also produced some 3'-nucleotides. Mutations at the conserved His-255 and Asp-256 residues comprising the C-terminal HD domain of this protein inactivated both phosphodiesterase and phosphatase activities, indicating that these activities are associated with the HD domain. Low concentrations of the E. coli tRNA (10 nm) had a strong inhibiting effect on both phosphatase and phosphodiesterase activities. The competitive character of inhibition by tRNA suggests that it might be a natural substrate for these activities. This inhibition was completely abolished by the addition of Mg(2+), Mn(2+), or Ca(2+), but not Ni(2+). The data suggest that the phosphohydrolase activities of the HD domain of the E. coli tRNA nucleotidyltransferase are involved in the repair of the 3'-CCA end of tRNA.  相似文献   

15.
16.
The properties of poly(G) polymerase and poly(A) polymerase activities in the DNA-dependent RNA polymerase [nucleosidetriphosphate: RNA nucleotidyltransferase EC 2.7.7.6] I fraction from cauliflower (Brassica oleracea var. botrytis) were comparatively investigated. The pH optimum, the effect of ionic strength, the effect of substrate concentration on the rate of synthesis, the effect of divalent metal ion concentration, and the time course of synthesis at different temperatures were all different for the three polymerase activities. The enzyme fraction preferentially utilized denatured DNA. Synthetic poly(C) and poly(U) were more effectively utillized for the synthesis of polyguanylate and polyadenylate, respectively. Further, it was found that poly(G) and poly(A) formed in vitro by the enzyme fraction had chain length of 25-28 and 84-89 nucleotides, respectively, and that poly (adenylate-gluanylate) chain was hardly formed when ATP and GTP were added together as substrates in the same reaction medium.  相似文献   

17.
18.
19.
20.
The reaction product of the ribosomal poly(A) polymerase [ATP(UTP):RNA nucleotidyltransferase] is analyzed. Two systems are used in vitro: (a) isolated polyribosomes with endogenous enzyme and RNA primer and (b) purified enzyme with total polyribosomal RNA as primer. In the polyribosome system about 50% of the [3H]AMP label is in poly(A)-containing mRNA. This RNA displays a heterogeneous size ditribution in the range of 8--30 S with a maximum at about 14 S. Upon denaturation the maximum is shifted towards the 10-S zone. The poly(A) polymerase catalyzes the addition of 12--18 adenylate residues to pre-existing mRNA poly(A) sequences of 40--160 residues. The [3H]AMP incorporated into poly(A)-lacking RNA is mainly in a fraction with an electrophoretic mobility corresponding to 4-S RNA. In the purified enzyme system, specificity towards poly(A)-containing mRNA is lost to a considerable extent. Only 10% of the [3H]AMP label is retained by oligo(dT)-cellulose. The bulk of the product is in 18-S rRNA and heterogeneous small molecular weight RNA. We conclude that the ribosome-associated poly(A) polymerase is most likely the enzyme responsible for the cytoplasmic polyadenylation of poly(A)-containing mRNA in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号