首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anantharaman V  Aravind L 《Proteins》2004,56(4):795-807
Using structural comparisons, we identified a novel domain with a simple fold in the bacterial cell division ATPase FtsA, the archaeo-eukaryotic RNA polymerase subunit Rpb7p, the GyrI superfamily, and the uncharacterized MTH1598/Tm1083-like proteins. The fold contains a core of 3 strands, forming a curved sheet, and a single helix in a strand-helix-strand-strand (SHS2) configuration. The SHS2 domain may exist either in single or duplicate copies within the same polypeptide. The single-copy versions of the domain in FtsA and Rbp7p are most closely related, and appear to mediate protein-protein interactions by means of strand 1, and the loop between strand 2 and strand 3 of the domain. We predict that the interactions between FtsA and its functional partners in bacterial cell division are likely to be similar to the interactions of Rbp7p in the archaeo-eukaryotic RNA polymerase complex. The dimeric versions typified by the GyrI superfamily appear to have been adapted for small-molecule binding. Sequence profiles searches helped us to identify several new versions of the GyrI superfamily, including a family of secreted forms that is found only in animals and the bacterial pathogen Leptospira. Through sequence-structure comparisons, we predict the positions that are likely to be important for ligand specificity in the GyrI superfamily. In the MTH1598/Tm1083-like proteins, a SHS2 domain is inserted into the loop between strand 1 and helix 1 of another SHS2 domain. This has resulted in a structure that has convergent similarities with the Hsp33 and green fluorescent protein folds. The sequence conservation pattern and its phyletic profile suggest that it might function as an enzyme in some conserved aspect of nucleic acid metabolism. Thus, the SHS2 domain is an example of a simple module that has been adapted to perform an entire spectrum of functions ranging from protein-protein interactions to small-molecule recognition and catalysis.  相似文献   

2.
Proteins of the Imp4/Brix superfamily are involved in ribosomal RNA processing, an essential function in all cells. We report the first structure of an Imp4/Brix superfamily protein, the Mil (for Methanothermobacter thermautotrophicus Imp4-like) protein (gene product Mth680), from the archaeon M. thermautotrophicus. The amino- and carboxy-terminal halves of Mil show significant structural similarity to one another, suggesting an origin by means of an ancestral duplication. Both halves show the same fold as the anticodon-binding domain of class IIa aminoacyl-tRNA synthetases, with greater conservation seen in the N-terminal half. This structural similarity, together with the charge distribution in Mil, suggests that Imp4/Brix superfamily proteins could bind single-stranded segments of RNA along a concave surface formed by the N-terminal half of their beta-sheet and a central alpha-helix. The crystal structure of Mil is incompatible with the presence, in the Imp4/Brix domain, of a helix-turn-helix motif that was proposed to comprise the RNA-binding moiety of the Imp4/Brix proteins.  相似文献   

3.
The manipulation of modular regulatory domains from allosteric enzymes represents a possible mechanism to engineer allostery into non-allosteric systems. Currently, there is insufficient understanding of the structure/function relationships in modular regulatory domains to rationally implement this methodology. The LeuA dimer regulatory domain represents a well-conserved, novel fold responsible for the regulation of two enzymes involved in branched chain amino acid biosynthesis, α-isopropylmalate synthase and citramalate synthase. The LeuA dimer regulatory domain is responsible for the feedback inhibition of these enzymes by their respective downstream products. Both enzymes display multidomain architecture with a conserved N-terminal TIM barrel catalytic domain and a C-terminal (βββα)2 LeuA dimer domain joined by a flexible linker region. Due to the similarity of three-dimensional structure and catalytic mechanism combined with low sequence similarity, we propose these enzymes can be classified as members of the LeuA dimer superfamily. Despite their similarity, members of the LeuA dimer superfamily display diversity in their allosteric mechanisms. In this review, structural aspects of the LeuA dimer superfamily are discussed followed by three examples highlighting the diversity of allosteric mechanisms in the LeuA dimer superfamily.  相似文献   

4.
The Regulator of Chromosome Condensation 1 (RCC1) was identified over 20 years ago as a critical cell cycle regulator. By analyzing its amino acid sequence, RCC1 was found to consist of seven homologous repeats of 51-68 amino acid residues, which were later shown to adopt a seven-bladed beta-propeller fold. Since the initial identification of RCC1, a number of proteins have been discovered that contain one or more RCC1-like domains (RLDs). As we show here, these RCC1 superfamily proteins can be subdivided in five subgroups based on structural criteria. In recent years, a number of studies have been published regarding the functions of RCC1 superfamily proteins. From these studies, the emerging picture is that the RLD is a versatile domain which may perform many different functions, including guanine nucleotide exchange on small GTP-binding proteins, enzyme inhibition or interaction with proteins and lipids. Here, we review the available structural and functional data on RCC1 superfamily members, paying special attention to the human proteins and their involvement in disease.  相似文献   

5.
Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H‐dependent reduction of maleylacetate, at a carbon–carbon double bond, to 3‐oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP‐10005, GraC, has been elucidated by the X‐ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N‐terminal NADH‐binding domain adopting an α/β structure and a C‐terminal functional domain adopting an α‐helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase‐like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate‐binding state and in the ligand‐free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase‐like superfamily. Proteins 2016; 84:1029–1042. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Fribourg S  Conti E 《EMBO reports》2003,4(7):699-703
The association between Mtr2 and Mex67 is essential for the nuclear export of bulk messenger RNA in yeast. In metazoans, the analogous function is carried out by the TAP–p15 heterodimer. Whereas Mex67 and TAP are highly conserved proteins, their binding partners, Mtr2 and p15, share no sequence similarity, but are nevertheless functionally homologous. Here, we report the 2.8-Å resolution crystal structure of Mtr2 in complex with the NTF2-like domain of Mex67. Mtr2 is a novel member of the NTF2-like family and interacts with Mex67, forming a complex with a similar structural architecture to that of TAP–p15. Mtr2 fulfils an analogous function to that of human p15 in maintaining the structural integrity of the heterodimer. In addition, Mtr2 presents a long internal loop, which contains residues that affect the export of the large ribosomal subunit.  相似文献   

7.
Glutathione transferases (GSTs) are a superfamily of enzymes that play a vital functional role in the cellular detoxification process. They catalyze the conjugation of the thiol group of glutathione (GSH) to the electrophilic groups of a wide range of hydrophobic substrates, leading to an easier removal of the latter from the cells. The kappa class is the least studied one among various classes within the superfamily. We report here the expression, purification, and crystal structure of human kappa class GST (hGSTK), which has been determined by the multiple-isomorphous replacement method and refined to 1.93 A resolution. The overall structure of hGSTK is similar to the recently reported structure of kappa class GST from rat mitochondrion. Each subunit of the dimeric hGSTK contains a thioredoxin (TRX)-like domain and a helical domain. A molecule of glutathione sulfinate, an oxidized product of GSH, is found to bind at the G site of each monomer. One oxygen atom of the sulfino group of GSF forms a hydrogen bond with the hydroxyl group of the catalytic residue Ser16. The TRX-like domain of hGSTK shares 19% sequence identity and structure similarity with human theta class GST, suggesting that the kappa class of GST is more closely related to the theta class enzyme within the GST superfamily. The structure of the TRX-like domain of hGSTK is also similar to that of glutathione peroxidase (GPx), implying an evolutionary relationship between GST and GPx.  相似文献   

8.
Only a minority of currently known protein families is characterized structurally. This makes homology-based structure modeling an essential instrument that can be viewed as the first approximation to experimental determination of protein structure. Using sequence similarity searches, we detected a distant similarity between a family of uncharacterized hypothetical proteins, COG4849, and the family of tRNA nucleotidyltransferases. The suggested remote homology between the N-terminal domain of COG4849 and the catalytic domain of tRNA nucleotidyltransferase was further supported by comparison of sequence profiles, methods for fold recognition and structure modeling. The combined multiple alignment of the two families reveals shared conservation of functionally important motifs and suggests the similarity in catalytic mechanisms of the performed reactions. Our results suggest that (i) the N-terminal domain of proteins from COG4849 shares structural similarity with the catalytic domain of tRNA nucleotidyltransferase, and (ii) this domain catalyzes the nucleotidyl transfer reaction involving two metal ions.  相似文献   

9.
Yeast Ubp3 and its co-factor Bre5 form a deubiquitylation complex to regulate protein transport between the endoplasmic reticulum and Golgi compartments of the cell. A novel N-terminal domain of the Ubp3 catalytic subunit forms a complex with the NTF2-like domain of the Bre5 regulatory subunit. Here, we report the X-ray crystal structure of an Ubp3-Bre5 complex and show that it forms a symmetric hetero-tetrameric complex in which the Bre5 NTF2-like domain dimer interacts with two L-shaped beta-strand-turn-alpha-helix motifs of Ubp3. The Ubp3 N-terminal domain binds within a hydrophobic cavity on the surface of the Bre5 NTF2-like domain subunit with conserved residues within both proteins interacting predominantly through antiparallel beta-sheet hydrogen bonds and van der Waals contacts. Structure-based mutagenesis and functional studies confirm the significance of the observed interactions for Ubp3-Bre5 association in vitro and Ubp3 function in vivo. Comparison of the structure to other protein complexes with NTF2-like domains shows that the Ubp3-Bre5 interface is novel. Together, these studies provide new insights into Ubp3 recognition by Bre5 and into protein recognition by NTF2-like domains.  相似文献   

10.
Horvath MM  Grishin NV 《Proteins》2001,42(2):230-236
Discovering distant evolutionary relationships between proteins requires detecting subtle similarities. Here we use a combination of sequence and structure analysis to show that the C-terminal domain of Escherichia coli HPII catalase with available spatial structure is a divergent member of the type I glutamine amidotransferase (GAT) superfamily. GAT-containing proteins include many biosynthetic enzymes such as E. coli carbamoyl phosphate synthetase and anthranilate synthase. Typical GAT domains have Rossmann fold-like topology and possess a catalytic triad similar to that of proteases. The C-terminal domain of HPII catalase has the GAT Rossmann fold but lacks the triad and therefore loses enzymatic activity. In addition, we detect significant sequence similarity between thiJ domains, some of which are known to have protease activity, and typical GAT proteins. Evolutionary tree analysis of the entire GAT superfamily indicates that the HPII catalase is more closely related to thiJ domains than to classical GAT domains and is likely to have evolved from a thiJ-like protein. This work illustrates the strength of sequence-based profile analysis techniques coupled with structural superpositions in developing an evolutionarily relevant classification of protein structures. Proteins 2001;42:230-236.  相似文献   

11.
The O-linked GlcNAc transferases (OGTs) are a recently characterized group of largely eukaryotic enzymes that add a single beta-N-acetylglucosamine moiety to specific serine or threonine hydroxyls. In humans, this process may be part of a sugar regulation mechanism or cellular signaling pathway that is involved in many important diseases, such as diabetes, cancer, and neurodegeneration. However, no structural information about the human OGT exists, except for the identification of tetratricopeptide repeats (TPR) at the N terminus. The locations of substrate binding sites are unknown and the structural basis for this enzyme's function is not clear. Here, remote homology is reported between the OGTs and a large group of diverse sugar processing enzymes, including proteins with known structure such as glycogen phosphorylase, UDP-GlcNAc 2-epimerase, and the glycosyl transferase MurG. This relationship, in conjunction with amino acid similarity spanning the entire length of the sequence, implies that the fold of the human OGT consists of two Rossmann-like domains C-terminal to the TPR region. A conserved motif in the second Rossmann domain points to the UDP-GlcNAc donor binding site. This conclusion is supported by a combination of statistically significant PSI-BLAST hits, consensus secondary structure predictions, and a fold recognition hit to MurG. Additionally, iterative PSI-BLAST database searches reveal that proteins homologous to the OGTs form a large and diverse superfamily that is termed GPGTF (glycogen phosphorylase/glycosyl transferase). Up to one-third of the 51 functional families in the CAZY database, a glycosyl transferase classification scheme based on catalytic residue and sequence homology considerations, can be unified through this common predicted fold. GPGTF homologs constitute a substantial fraction of known proteins: 0.4% of all non-redundant sequences and about 1% of proteins in the Escherichia coli genome are found to belong to the GPGTF superfamily.  相似文献   

12.
[NiFe]-hydrogenases require a set of complementary and regulatory proteins for correct folding and maturation processes. One of the essential regulatory proteins, HypF (82kDa) contains a N-terminal acylphosphatase (ACT)-like domain, a sequence motif shared with enzymes catalyzing O-carbamoylation, and two zinc finger motifs similar to those found in the DnaJ chaperone. The HypF acylphosphatase domain is thought to support the conversion of carbamoylphosphate into CO and CN(-), promoting coordination of these ligands to the hydrogenase metal cluster. It has been shown recently that the HypF N-terminal domain can aggregate in vitro to yield fibrils matching those formed by proteins linked to amyloid diseases. The 1.27A resolution HypF acylphosphatase domain crystal structure (residues 1-91; R-factor 13.1%) shows a domain fold of betaalphabetabetaalphabeta topology, as observed in mammalian acylphosphatases specifically catalyzing the hydrolysis of the carboxyl-phosphate bonds in acylphosphates. The HypF N-terminal domain can be assigned to the ferredoxin structural superfamily, to which RNA-binding domains of small nuclear ribonucleoproteins and some metallochaperone proteins belong. Additionally, the HypF N-terminal domain displays an intriguing structural relationship to the recently discovered ACT domains. The structures of different HypF acylphosphatase domain complexes show a phosphate binding cradle comparable to the P-loop observed in unrelated phosphatase families. On the basis of the catalytic mechanism proposed for acylphosphatases, whereby residues Arg23 and Asn41 would support substrate orientation and the nucleophilic attack of a water molecule on the phosphate group, fine structural features of the HypF N-terminal domain putative active site region may account for the lack of acylphosphatase activity observed for the expressed domain. The crystallographic analyses here reported were undertaken to shed light on the molecular bases of inactivity, folding, misfolding and aggregation of the HypF N-terminal acylphosphatase domain.  相似文献   

13.
Protein-interaction domains can create unique macromolecular complexes that drive evolutionary innovation. By combining bioinformatic and phylogenetic analyses with structural approaches, we have discovered that the docking and dimerization (D/D) domain of the PKA regulatory subunit is an ancient and conserved protein fold. An archetypal function of this module is to interact with A-kinase-anchoring proteins (AKAPs) that facilitate compartmentalization of this key cell-signaling enzyme. Homology searching reveals that D/D domain proteins comprise a superfamily with 18 members that function in a variety of molecular and cellular contexts. Further in silico analyses indicate that D/D domains segregate into subgroups on the basis of their similarity to type I or type II PKA regulatory subunits. The sperm autoantigenic protein 17 (SPA17) is a prototype of the type II or R2D2 subgroup that is conserved across metazoan phyla. We determined the crystal structure of an extended D/D domain from SPA17 (amino acids 1–75) at 1.72 Å resolution. This revealed a four-helix bundle-like configuration featuring terminal β-strands that can mediate higher order oligomerization. In solution, SPA17 forms both homodimers and tetramers and displays a weak affinity for AKAP18. Quantitative approaches reveal that AKAP18 binding occurs at nanomolar affinity when SPA17 heterodimerizes with the ropporin-1-like D/D protein. These findings expand the role of the D/D fold as a versatile protein-interaction element that maintains the integrity of macromolecular architectures within organelles such as motile cilia.  相似文献   

14.
The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily consists of proteins containing the BAR domain, the extended FCH (EFC)/FCH-BAR (F-BAR) domain, or the IRSp53-MIM homology domain (IMD)/inverse BAR (I-BAR) domain. These domains bind membranes through electrostatic interactions between the negative charges of the membranes and the positive charges on the structural surface of homo-dimeric BAR domain superfamily members. Some BAR superfamily members have membrane-penetrating insertion loops, which also contribute to the membrane binding by the proteins. The membrane-binding surface of each BAR domain superfamily member has its own unique curvature that governs or senses the curvature of the membrane for BAR-domain binding. The wide range of BAR-domain surface curvatures correlates with the various invaginations and protrusions of cells. Therefore, each BAR domain superfamily member may generate and recognize the curvature of the membrane of each subcellular structure, such as clathrin-coated pits or filopodia. The BAR domain superfamily proteins may regulate their own catalytic activity or that of their binding proteins, depending on the membrane curvature of their corresponding subcellular structures.  相似文献   

15.
Considerable attention has recently been paid to the N-Myc downstream-regulated gene (NDRG) family because of its potential as a tumor suppressor in many human cancers. Primary amino acid sequence information suggests that the NDRG family proteins may belong to the α/β-hydrolase (ABH) superfamily; however, their functional role has not yet been determined. Here, we present the crystal structures of the human and mouse NDRG2 proteins determined at 2.0 and 1.7 Å resolution, respectively. Both NDRG2 proteins show remarkable structural similarity to the ABH superfamily, despite limited sequence similarity. Structural analysis suggests that NDRG2 is a nonenzymatic member of the ABH superfamily, because it lacks the catalytic signature residues and has an occluded substrate-binding site. Several conserved structural features suggest NDRG may be involved in molecular interactions. Mutagenesis data based on the structural analysis support a crucial role for helix α6 in the suppression of TCF/β-catenin signaling in the tumorigenesis of human colorectal cancer, via a molecular interaction.  相似文献   

16.
Structure of small G proteins and their regulators   总被引:6,自引:0,他引:6  
In recent years small G proteins have become an intensively studied group of regulatory GTP hydrolases involved in cell signaling. More than 100 small G proteins have been identified in eucaryotes from protozoan to human. The small G protein superfamily includes Ras, Rho Rab, Rac, Sarl/Arf and Ran homologs, which take part in numerous and diverse cellular processes, such as gene expression, cytoskeleton reorganization, microtubule organization, and vesicular and nuclear transport. These proteins share a common structural core, described as the G domain, and significant sequence similarity. In this paper we review the available data on G domain structure, together with a detailed analysis of the mechanism of action. We also present small G protein regulators: GTPase activating proteins that bind to a catalytic G domain and increase its low intrinsic hydrolase activity, GTPase dissociation inhibitors that stabilize the GDP-bound, inactive state of G proteins, and guanine nucleotide exchange factors that accelerate nucleotide exchange in response to cellular signals. Additionally, in this paper we describe some aspects of small G protein interactions with down-stream effectors.  相似文献   

17.
Transient receptor potential (TRP) channels modulate calcium levels in eukaryotic cells in response to external signals. A novel transient receptor potential channel has the ability to phosphorylate itself and other proteins on serine and threonine residues. The catalytic domain of this channel kinase has no detectable sequence similarity to classical eukaryotic protein kinases and is essential for channel function. The structure of the kinase domain, reported here, reveals unexpected similarity to eukaryotic protein kinases in the catalytic core as well as to metabolic enzymes with ATP-grasp domains. The inclusion of the channel kinase catalytic domain within the eukaryotic protein kinase superfamily indicates a significantly wider distribution for this group of signaling proteins than suggested previously by sequence comparisons alone.  相似文献   

18.
It is widely recognized that the two major forms of GAD present in adult vertebrate brains are each composed of two major sequence domains that differ in size and degree of similarity. The amino-terminal domain is smaller and shows little sequence identity between the two forms. This domain is thought to mediate the subcellular targeting of the two GADs. Substantial parts of the amino-terminal domain appear to be exposed and flexible, as shown by proteolysis experiments and the locations of posttranslational modifications. The carboxyl-terminal sequence domain contains the catalytic site and shows substantial sequence similarity between the forms. The interaction of GAD with its cofactor, pyridoxal-5' phosphate (pyridoxal-P), plays a key role in the regulation of GAD activity. Although GAD(65) and GAD(67) interact differently with pyridoxal-P, their cofactor-binding sites contain the same set of nine putative cofactor-binding residues and have the same basic structural fold. Thus the cofactor-binding differences cannot be attributed to fundamental structural differences between the GADs but must result from subtle modifications of the basic cofactor-binding fold. The presence of another conserved motif suggests that the carboxyl-terminal domain is composed of two functional domains: the cofactor-binding domain and a small domain that closes when the substrate binds. Finally, GAD is a dimeric enzyme and conserved features of GADs superfamily of pyridoxal-P proteins indicate the dimer-forming interactions are mediated mainly by the carboxyl-terminal domain.  相似文献   

19.
New relationships found in the process of updating the structural classification of proteins (SCOP) database resulted in the revision of the structure of the N-terminal, DNA-binding domain of the transition state regulator AbrB. The dimeric AbrB domain shares a common fold with the addiction antidote MazE and the subunit of uncharacterized protein MraZ implicated in cell division and cell envelope formation. It has a detectable sequence similarity to both MazE and MraZ thus providing an evolutionary link between the two proteins. The putative DNA-binding site of AbrB is found on the same face as the DNA-binding site of MazE and appears similar, both in structure and sequence, to the exposed conserved region of MraZ. This strongly suggests that MraZ also binds DNA and allows for a consensus model of DNA recognition by the members of this novel protein superfamily.  相似文献   

20.
The heme-copper oxidase (HCO) superfamily includes HCOs in aerobic respiratory chains and nitric oxide reductases (NORs) in the denitrification pathway. The HCO/NOR catalytic subunit has a core structure consisting of 12 transmembrane helices (TMHs) arranged in three-fold rotational pseudosymmetry, with six conserved histidines for heme and metal binding. Using sensitive sequence similarity searches, we detected a number of novel HCO/NOR homologs and named them HCO Homology (HCOH) proteins. Several HCOH families possess only four TMHs that exhibit the most pronounced similarity to the last four TMHs (TMHs 9–12) of HCOs/NORs. Encoded by independent genes, four-TMH HCOH proteins represent a single evolutionary unit (EU) that relates to each of the three homologous EUs of HCOs/NORs comprising TMHs 1–4, TMHs 5–8, and TMHs 9–12. Single-EU HCOH proteins could form homotrimers or heterotrimers to maintain the general structure and ligand-binding sites defined by the HCO/NOR catalytic subunit fold. The remaining HCOH families, including NnrS, have 12-TMHs and three EUs. Most three-EU HCOH proteins possess two conserved histidines and could bind a single heme. Limited experimental studies and genomic context analysis suggest that many HCOH proteins could function in the denitrification pathway and in detoxification of reactive molecules such as nitric oxide. HCO/NOR catalytic subunits exhibit remarkable structural similarity to the homotrimers of MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) proteins. Gene duplication, fusion, and fission likely play important roles in the evolution of HCOs/NORs and HCOH proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号