首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Using a 50-year-old field experiment, we investigated the effects of the long-term land management practices of repeated burning and grazing on peatland vegetation and carbon dynamics (C). Plant community composition, C stocks in soils and vegetation, and C fluxes of CO2, CH4 and DOC, were measured over an 18-month period. We found that both burning and grazing reduced aboveground C stocks, and that burning reduced C stocks in the surface peat. Both burning and grazing strongly affected vegetation community composition, causing an increase in graminoids and a decrease in ericoid subshrubs and bryophytes relative to unburned and ungrazed controls; this effect was especially pronounced in burned treatments. Soil microbial properties were unaffected by grazing and showed minor responses to burning, in that the C:N ratio of the microbial biomass increased in burned relative to unburned treatments. Increases in the gross ecosystem CO2 fluxes of respiration and photosynthesis were observed in burned and grazed treatments relative to controls. Here, the greatest effects were seen in the burning treatment, where the mean increase in gross fluxes over the experimental period was greater than 40%. Increases in gross CO2 fluxes were greatest during the summer months, suggesting an interactive effect of land use and climate on ecosystem C cycling. Collectively, our results indicate that long-term management of peatland has marked effects on ecosystem C dynamics and CO2 flux, which are primarily related to changes in vegetation community structure.  相似文献   

2.
Theory suggests that more complex food webs promote stability and can buffer the effects of perturbations, such as drought, on soil organisms and ecosystem functions. Here, we tested experimentally how soil food web trophic complexity modulates the response to drought of soil functions related to carbon cycling and the capture and transfer below‐ground of recent photosynthate by plants. We constructed experimental systems comprising soil communities with one, two or three trophic levels (microorganisms, detritivores and predators) and subjected them to drought. We investigated how food web trophic complexity in interaction with drought influenced litter decomposition, soil CO2 efflux, mycorrhizal colonization, fungal production, microbial communities and soil fauna biomass. Plants were pulse‐labelled after the drought with 13C‐CO2 to quantify the capture of recent photosynthate and its transfer below‐ground. Overall, our results show that drought and soil food web trophic complexity do not interact to affect soil functions and microbial community composition, but act independently, with an overall stronger effect of drought. After drought, the net uptake of 13C by plants was reduced and its retention in plant biomass was greater, leading to a strong decrease in carbon transfer below‐ground. Although food web trophic complexity influenced the biomass of Collembola and fungal hyphal length, 13C enrichment and the net transfer of carbon from plant shoots to microbes and soil CO2 efflux were not affected significantly by varying the number of trophic groups. Our results indicate that drought has a strong effect on above‐ground–below‐ground linkages by reducing the flow of recent photosynthate. Our results emphasize the sensitivity of the critical pathway of recent photosynthate transfer from plants to soil organisms to a drought perturbation, and show that these effects may not be mitigated by the trophic complexity of soil communities, at least at the level manipulated in this experiment.  相似文献   

3.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

4.
Soil nitrogen (N) is an important component in maintaining ecosystem stability, and the introduction of non-native plants can alter N cycling by changing litter quality and quantity, nutrient uptake patterns, and soil food webs. Our goal was to determine the effects of Bromus tectorum (C3) invasion on soil microbial N cycling in adjacent non-invaded and invaded C3 and C4 native arid grasslands. We monitored resin-extractable N, plant and soil δ13C and δ15N, gross rates of inorganic N mineralization and consumption, and the quantity and isotopic composition of microbial phospholipid biomarkers. In invaded C3 communities, labile soil organic N and gross and net rates of soil N transformations increased, indicating an increase in overall microbial N cycling. In invaded C4 communities labile soil N stayed constant, but gross N flux rates increased. The δ13C of phospholipid biomarkers in invaded C4 communities showed that some portion of the soil bacterial population preferentially decomposed invader C3-derived litter over that from the native C4 species. Invasion in C4 grasslands also significantly decreased the proportion of fungal to bacterial phospholipid biomarkers. Different processes are occurring in response to B. tectorum invasion in each of these two native grasslands that: 1) alter the size of soil N pools, and/or 2) the activity of the microbial community. Both processes provide mechanisms for altering long-term N dynamics in these ecosystems and highlight how multiple mechanisms can lead to similar effects on ecosystem function, which may be important for the construction of future biogeochemical process models.  相似文献   

5.
Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.  相似文献   

6.
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short‐term exchange and the long‐term storage of atmospheric carbon dioxide (CO2) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11‐year time series of half‐hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2. The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23–0.54 gC m?2. On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored.  相似文献   

7.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

8.

Peatlands are characterized by their large carbon (C) storage capacity and represent important C sinks globally. In southern Chile, young peatlands (few centuries old) have originated due to clearcutting or fire at forest sites with high precipitation on poorly drained soils. These novel ecosystems are called anthropogenic peatlands here. Their role in the regional C cycle remains largely unknown. Here, we present 18 months of eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide (CO2) in an anthropogenic peatland in northern Chiloé Island, part of which is kept undisturbed for 30–40 years, by excluding human uses, and another section of the same peatland that has been disturbed by cattle grazing and Sphagnum moss extraction. Gross primary productivity (GPP) and ecosystem respiration (Reco) were modeled from NEE, based on measured photosynthetically active radiation and air temperature, separately for each section of the peatland. Uncertainties of the annual flux estimates were assessed from the variability of modelled fluxes induced by applying different time-windows for model development between 10 and 20 days. The undisturbed area of the peatland was on average (±?SD) a larger net CO2 sink (NEE?=???135?±?267 g?CO2?m?2?year?1) than the disturbed area (NEE?=???33?±?111 g?CO2?m?2?year?1). These NEE CO2 balances are small even though GPP and Reco were larger compared with other peatlands. Reco had a direct relationship with water table depth (from soil surface) and a negative relationship with soil water fraction. Our results show that the disturbance by moss extraction and cattle grazing is likely to reduce the CO2 sink function of many anthropogenic and natural peatlands on Chiloé Island, which are subjected to the same impacts.

  相似文献   

9.
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant‐removal experiment in two Sphagnum‐dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb‐14C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.  相似文献   

10.
A reduction in the length of the snow‐covered season in response to a warming of high‐latitude and high‐elevation ecosystems may increase soil carbon availability both through increased litter fall following longer growing seasons and by allowing early winter soil frosts that lyse plant and microbial cells. To evaluate how an increase in labile carbon during winter may affect ecosystem carbon balance we investigated the relationship between carbon availability and winter CO2 fluxes at several locations in the Colorado Rockies. Landscape‐scale surveys of winter CO2 fluxes from sites with different soil carbon content indicated that winter CO2 fluxes were positively related to carbon availability and experimental additions of glucose to soil confirmed that CO2 fluxes from snow‐covered soil at temperatures between 0 and ?3°C were carbon limited. Glucose added to snow‐covered soil increased CO2 fluxes by 52–160% relative to control sites within 24 h and remained 62–70% higher after 30 days. Concurrently a shift in the δ13C values of emitted CO2 toward the glucose value indicated preferential utilization of the added carbon confirming the presence of active heterotrophic respiration in soils at temperatures below 0°C. The sensitivity of these winter fluxes to substrate availability, coupled with predicted changes in winter snow cover, suggests that feedbacks between growing season carbon uptake and winter heterotrophic activity may have unforeseen consequences for carbon and nutrient cycling in northern forests. For example, published winter CO2 fluxes indicate that on average 50% of growing season carbon uptake currently is respired during the winter; changes in winter CO2 flux in response to climate change have the potential to reduce substantially the net carbon sink in these ecosystems.  相似文献   

11.
The area under the cultivation of perennial bioenergy crops on organic soils in the northern countries is fast increasing. To understand the impact of reed canary grass (RCG, Phalaris arundinaceae L.) cultivation on the carbon dioxide (CO2) balance of an organic soil, net ecosystem CO2 exchange (NEE) was measured for four years in a RCG cultivated cutover peatland in eastern Finland using the eddy covariance technique. There were striking differences among the years in the annual precipitation. The annual precipitation was higher during 2004 and 2007 and lower during 2005 and 2006 than the 1971–2000 regional mean. During wet growing seasons, moderate temperatures, high surface soil moisture and low evaporative demand favoured high CO2 uptake. During dry seasons, owing to soil moisture and atmospheric stress, photosynthetic activity was severely restricted. The CO2 uptake [gross primary productivity (GPP)] was positively correlated with soil moisture, air temperature and inversely with vapour pressure deficit. Total ecosystem respiration (TER) increased with increasing soil temperature but decreased with increasing soil moisture. The relative responses of GPP and TER to moisture stress were different. While changes in TER for a given change in soil moisture were moderate, variations in GPP were drastic. Also, the seasonal variations in TER were not as conspicuous as those in GPP implying that GPP is the primary regulator of the interannual variability in NEE in this ecosystem. The ecosystem accumulated a total of 398 g C m?2 from the beginning of 2004 until the end of 2007. It retained some carbon during a wet year such as 2004 even after accounting for the loss of carbon in the form of harvested biomass. Based on this CO2 balance analysis, RCG cultivation is found to be a promising after‐use option on an organic soil.  相似文献   

12.
Daniel B. Metcalfe  Johan Olofsson 《Oikos》2015,124(12):1632-1638
Herbivores play a key role in the carbon (C) cycle of arctic ecosystems, but these effects are currently poorly represented within models predicting land–atmosphere interactions under future climate change. Although some studies have examined the influence of various individual species of herbivores on tundra C sequestration, few studies have directly compared the effects of different herbivore assemblages. We measured peak growing season instantaneous ecosystem carbon dioxide (CO2) exchange (photosynthesis, respiration and net ecosystem exchange) on replicated plots in arctic tundra which, for 14 years, have excluded different portions of the herbivore population (grazed controls, large mammals excluded, both small and large mammals excluded). Herbivory suppressed photosynthetic CO2 uptake, but caused little change in ecosystem respiration. Despite evidence that small mammals consume a greater portion of plant biomass in these ecosystems, the effect of excluding only large herbivores was indistinguishable from that of excluding both large and small mammals. The herbivory‐induced decline in photosynthesis was not entirely attributable to a decline in leaf area but also likely reflects shifts in plant community composition and/or species physiology. One shrub species – Betula nana – accounted for only around 13% of total aboveground vascular plant biomass but played a central role in controlling ecosystem CO2 uptake and release, and was suppressed by herbivory. We conclude that herbivores can have large effects on ecosystem C cycling due to shifts in plant aboveground biomass and community composition. An improved understanding of the mechanisms underlying the distinct ecosystem impacts of different herbivore groups will help to more accurately predict the net impacts of diverse herbivore communities on arctic C fluxes.  相似文献   

13.
The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and −0.77 μmol m−2 s−1 in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.  相似文献   

14.
Peatland ecosystems have been consistent carbon (C) sinks for millennia, but it has been predicted that exposure to warmer temperatures and drier conditions associated with climate change will shift the balance between ecosystem photosynthesis and respiration providing a positive feedback to atmospheric CO2 concentration. Our main objective was to determine the sensitivity of ecosystem photosynthesis, respiration and net ecosystem production (NEP) measured by eddy covariance, to variation in temperature and water table depth associated with interannual shifts in weather during 2004–2009. Our study was conducted in a moderately rich treed fen, the most abundant peatland type in western Canada, in a region (northern Alberta) where peatland ecosystems are a significant landscape component. During the study, the average growing season (May–October) water depth declined approximately 38 cm, and temperature [expressed as cumulative growing degree days (GDD, March–October)] varied approximately 370 GDD. Contrary to previous predictions, both ecosystem photosynthesis and respiration showed similar increases in response to warmer and drier conditions. The ecosystem remained a strong net sink for CO2 with an average NEP (± SD) of 189 ± 47 g C m?2 yr?1. The current net CO2 uptake rates were much higher than C accumulation in peat determined from analyses of the relationship between peat age and cumulative C stock. The balance between C addition to, and total loss from, the top 0–30 cm depth (peat age range 0–70 years) of shallow peat cores averaged 43 ± 12 g C m?2 yr?1. The apparent long‐term average rate of net C accumulation in basal peat samples was 19–24 g C m?2 yr?1. The difference between current rates of net C uptake and historical rates of peat accumulation is likely a result of vegetation succession and recent increases in tree establishment and productivity.  相似文献   

15.
Elevated atmospheric carbon dioxide (CO2) has the potential to alter soil carbon (C) and nitrogen (N) cycling in arid ecosystems through changes in net primary productivity. However, an associated feedback exists because any sustained increases in plant productivity will depend upon the continued availability of soil N. We took soils from under the canopies of major shrubs, grasses, and plant interspaces in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 and incubated them in the laboratory with amendments of labile C and N to determine if elevated CO2 altered the mechanistic controls of soil C and N on microbial N cycling. Net ammonification increased under shrubs exposed to elevated CO2, while net nitrification decreased. Elevated CO2 treatments exhibited greater fluxes of N2O–N under Lycium spp., but not other microsites. The proportion of microbial/extractable organic N increased under shrubs exposed to elevated CO2. Heterotrophic N2‐fixation and C mineralization increased with C addition, while denitrification enzyme activity and N2O–N fluxes increased when C and N were added in combination. Laboratory results demonstrated the potential for elevated CO2 to affect soil N cycling under shrubs and supports the hypothesis that energy limited microbes may increase net inorganic N cycling rates as the amount of soil‐available C increases under elevated CO2. The effect of CO2 enrichment on N‐cycling processes is mediated by its effect on the plants, particularly shrubs. The potential for elevated atmospheric CO2 to lead to accumulation of NH4+ under shrubs and the subsequent volatilization of NH3 may result in greater losses of N from this system, leading to changes in the form and amount of plant‐available inorganic N. This introduces the potential for a negative feedback mechanism that could act to constrain the degree to which plants can increase productivity in the face of elevated atmospheric CO2.  相似文献   

16.
Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp‐broadleaved forest in New Zealand, dominated by 100–400‐year‐old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light‐saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis – whole‐plant respiration) per unit ground area at saturating irradiance was 1.9 μmol m?2 s?1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air‐dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m?2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ?1010 g m?2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ~11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate.  相似文献   

17.

Background and Aims

A substantial amount of photosynthesized plant-C is allocated belowground in grassland ecosystems where it influences the structure and function of the soil microbial community with potential implications for C cycling and storage. We applied stable isotope probing of microbial PLFAs and repeated soil sampling in a grassland over a period of 1 year to assess the role of microbial communities in the cycling of rhizodeposit-C.

Methods

Pulse-labeling with 13CO2 was performed in a grassland site near Gent (Belgium). Soil samples were taken 24 h, 1 week, 1 month, 4 months, 9 months and 1 year following labeling and analyzed for 13C in soil, roots and microbial PLFAs.

Results

C enrichment of PLFAs occurred rapidly (within 24 h) but temporally varied across microbial groups. PLFAs indicative for fungi and gram-negative bacteria showed a faster 13C uptake compared to gram-positive bacteria and actinomycetes. However, the relative 13C concentrations of the latter communities increased after 1 week, while those of fungi decreased and those of gram-negative bacteria remained constant. PLFA 13C mean residence times were much shorter for fungi compared to bacteria and actinomycetes.

Conclusions

Our results indicate temporally varying rhizodeposit-C uptake by different microbial groups, and faster turnover rates of mycorrhizal versus saprotrophic fungi and fungi versus bacteria. Fungi appeared to play a major role in the initial processing and possible rapid channeling of rhizodeposit-C into the soil microbial community. Actinomycetes and gram-positive bacteria appeared to have a delayed utilization of rhizodeposit-C or to prefer other C sources upon rhizodeposition.  相似文献   

18.
In many terrestrial ecosystems nitrogen (N) limits productivity and plant community composition is influenced by N availability. However, vegetation is not only controlled by N; plant species may influence ecosystem N dynamics through positive or negative effects on N cycling. We examined four potential mechanisms of plant species effects on nitrogen (N) cycling. We found no species differences in gross ammonification suggesting there are no changes in the ecosystem N cycling rate between the soil organic matter pool (SOM) and the plant/microbial pool. We also found weak differences among plant species in gross nitrification, thus plant species only marginally change the relative sizes of the NH4+ and NO3? pools. Next, more than 90% of mineralized N was microbially immobilized, and microbial N immobilization was positively correlated with root biomass. Finally, while species differed in extractable soil NO3? concentration, these differences were not related to root biomass suggesting that microbial immobilization drives net N mineralization and soil NO3? levels. Our results indicate that plant species do not cause feedbacks on the N cycling rate among the three major ecosystem N pools over nine years. However, plant carbon (C) inputs to the soil control microbial N immobilization and thereby change N partitioning between the plant and microbial N pools. Furthermore our results suggest that the SOM pool can act as a strong bottleneck for N cycling in these systems.  相似文献   

19.
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long‐term, multi‐level and multi‐factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m?2) were applied and the higher level was combined with supplemental summer rain. We made plot‐level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ13C and NDVI to examine responses to our treatments at ecosystem‐ and leaf‐levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2‐C budgets. Low‐level warming increased the magnitude of the ecosystem C sink. Meanwhile, high‐level warming made the ecosystem a source of C to the atmosphere. When high‐level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low‐level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf‐level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf‐level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain.  相似文献   

20.
Microbes play key roles in various biogeochemical processes, including carbon (C) and nitrogen (N) cycling. However, changes of microbial community at the functional gene level by livestock grazing, which is a global land‐use activity, remain unclear. Here we use a functional gene array, GeoChip 4.0, to examine the effects of free livestock grazing on the microbial community at an experimental site of Tibet, a region known to be very sensitive to anthropogenic perturbation and global warming. Our results showed that grazing changed microbial community functional structure, in addition to aboveground vegetation and soil geochemical properties. Further statistical tests showed that microbial community functional structures were closely correlated with environmental variables, and variations in microbial community functional structures were mainly controlled by aboveground vegetation, soil C/N ratio, and NH4+‐N. In‐depth examination of N cycling genes showed that abundances of N mineralization and nitrification genes were increased at grazed sites, but denitrification and N‐reduction genes were decreased, suggesting that functional potentials of relevant bioprocesses were changed. Meanwhile, abundances of genes involved in methane cycling, C fixation, and degradation were decreased, which might be caused by vegetation removal and hence decrease in litter accumulation at grazed sites. In contrast, abundances of virulence, stress, and antibiotics resistance genes were increased because of the presence of livestock. In conclusion, these results indicated that soil microbial community functional structure was very sensitive to the impact of livestock grazing and revealed microbial functional potentials in regulating soil N and C cycling, supporting the necessity to include microbial components in evaluating the consequence of land‐use and/or climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号