首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Petyuk VA  Zenkova MA  Giege R  Vlassov VV 《FEBS letters》1999,444(2-3):217-221
The interaction of antisense oligodeoxyribonucleotides with yeast tRNA(Phe) was investigated. 14-15-mers complementary to the 3'-terminal sequence including the ACCA end bind to the tRNA under physiological conditions. At low oligonucleotide concentrations the binding occurs at the unique complementary site. At higher oligonucleotide concentrations, the second oligonucleotide molecule binds to the complex due to non-perfect duplex formation in the T-loop stabilized by stacking between the two bound oligonucleotides. In these complexes the acceptor stem is open and the 5'-terminal sequence of the tRNA is accessible for binding of a complementary oligonucleotide. The results prove that the efficient binding of oligonucleotides to the 3'-terminal sequence of the tRNA occurs through initial binding to the single-stranded sequence ACCA followed by invasion in the acceptor stem and strand displacement.  相似文献   

3.
Interaction of yeast phenylalanine tRNA with oligonucleotides complementary to its 3′-terminal nucleotide sequence was thoroughly studied. Using the gel retardation technique, thermodynamic and kinetic parameters of the tRNA complexation in physiological conditions were determined. Analysis of dependences of the complex formation on the oligonucleotide concentration and incubation time showed that this process proceeds in two stages. At the first stage, a metastable complex of the oligonucleotide with the open, single-stranded sequence ACCA at the 3′ end of tRNA rapidly forms. The second stage involves a slow intramolecular rearrangement of the resulting metastable complex into a full-sized heteroduplex accompanied by the tRNAPhe unfolding. The data gained suggest that the RNA unfolding stage is limiting in the interaction of oligonucleotides with natural RNAs. Principles of selection of optimal hybridization probes and antisense oligonucleotides are discussed.  相似文献   

4.
Three dimensional atomic models of complexes between 10-, 15-mer long oligonucleotides and east tRNAPhe have been calculated. It has been found that the fast-forming primary complexes are the major groove complexes with the coaxial acceptor- and T-steams of the tRNA(Phe). Oligonucleotide forms a triplex of the recombinant R-triplex type. The long steams allow to make a "strong complexes" whith oligonucleotide, which delivers its 3'-end nucleotides to the vicinity of the T-loop, adjacent to the steam. These nucleotides destabilize the loop structure and initiate conformational rearrangement with a local destruction of the tRNA(Phe) and formation of the final tRNA(Phe)-oligonucleotide complementary complex. The primary complex formation and following destruction of the tRNA(Phe) constitutes the mechanism of the 'molecular wedge'. The effective anticense oligonucleotide should consist of the three segments: 1--complex initiator, 2--complex formative, 3--loop destructor an have to be complementary to the tRNA structure element of [(free end)/loop-steam-loop].  相似文献   

5.
Phenomenon of the interaction of a double-stranded DNA fragment with an oligonucleotide complementary to the end of the duplex strand was demonstrated to occur via formation of three-stranded DNA structure with an oligonucleotide invasion. It was shown that oligonucleotides complementary to the duplex ends inhibit Holliday junction formation in solutions of homologous linear DNA fragments. This effect depends on the oligonucleotide concentration, sequence and their complementarity to the duplex ends. Formation of three-stranded complexes was demonstrated using radiolabeled oligonucleotides by agarose gel-electrophoresis followed by autoradiography. Analysis of three-stranded DNA structures by chemical cleavage of non-canonical base pairs revealed that oligonucleotide invades into duplex ends via a sequential displacement mechanism and that the level of the invasion may vary considerably.  相似文献   

6.
Interaction of yeast tRNA(Phe) with oligodeoxyribonucleotides containing 5-methylcytosine, 2-aminoadenine, and 5-propynyl-2'-deoxyuridine was investigated. The modified oligonucleotides show increased binding capacity although the association rates are similar for the modified and natural oligonucleotides. The most pronounced increase in association constant (70 times) due to the incorporation of the strongly binding units was achieved in the case of oligonucleotide complementary to the sequence 65-76 of the tRNA(Phe).  相似文献   

7.
A new phenomenon was described: a double-stranded DNA fragment interacted with a single-stranded oligonucleotide complementary to the terminal region of one strand of the duplex to yield a complex with oligonucleotide invasion. Generation of Holliday junctions by homologous linear DNA fragments was less efficient in the presence of single-stranded oligonucleotides complementary to duplex ends. The effect depended on the oligonucleotide concentration, size, and complementarity to a duplex strand. Sequence-specific complexes with single strand invasion were detected in mixtures containing radiolabeled oligonucleotides and duplexes. A single-stranded oligonucleotide invaded a duplex even when its concentration was far lower than the duplex concentration. Complexes with single strand invasion were analyzed by chemical cleavage of noncanonical base pairs. Analysis showed that an oligonucleotide interacts with the complementary region of one strand of the duplex, gradually displacing the other strand. The extent of oligonucleotide invasion into the duplex considerably varied. Oligonucleotide invasion into duplexes became more efficient with increasing oligonucleotide size.  相似文献   

8.
9.
Design considerations for array CGH to oligonucleotide arrays.   总被引:3,自引:0,他引:3  
BACKGROUND: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. METHODS: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. RESULTS: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. CONCLUSION: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.  相似文献   

10.
Biotinylated 2'-OMe RNA oligonucleotides complementary to two separate regions of human U2 snRNA have been used as affinity probes to study U2 snRNP--pre-mRNA interactions. Both oligonucleotides bind specifically and allow highly selective removal of U2 snRNP from HeLa cell nuclear extracts. Pre-mRNA substrates can also be specifically affinity selected through oligonucleotides binding to U2 snRNP particles in splicing complexes. Stable binding of U2 snRNP to pre-mRNA is blocked by the pre-binding of an oligonucleotide to the branch site complementary region of U2 snRNA, but not by an oligonucleotide binding to the 5' terminus of U2. Both oligonucleotides affinity select the intron product, but not the intron intermediate, when added after spliceosome assembly has taken place. The effect of 2'-OMe RNA oligonucleotides on splicing complex formation has been used to demonstrate that complexes containing U2 snRNP and unspliced pre-mRNA are precursors to functional spliceosomes.  相似文献   

11.
Three-dimensional atomic models of complexes between yeast tRNAPhe and 10- or 15-mer oligonucleotides complementary to the 3′-terminal tRNA sequence have been constructed using computer modeling. It has been found that rapidly formed primary complexes appear when an oligonucleotide binds to the coaxial acceptor and T stems of the tRNAPhe along the major groove, which results in the formation of a triplex. Long stems allow the formation of a sufficiently strong complex with the oligonucleotide, which delivers its 3′-terminal nucleotides to the vicinity of the T loop adjoining the stem. These nucleotides destabilize the loop structure and initiate conformational rearrangements involving local tRNAPhe destruction and formation of the final tRNAPhe-oligonucleotide complementary complex. The primary complex formation and the following tRNAPhe destruction constitute the “molecular wedge” mechanism. An effective antisence oligonucleotide should consist of three segments—(1) complex initiator, (2) primary complex stabilizer, and (3) loop destructor—and be complementary to the (free end)/loop-stem-loop tRNA structural element.  相似文献   

12.
13.
The Sm-like protein Hfq promotes the association of small antisense RNAs (sRNAs) with their mRNA targets, but the mechanism of Hfq''s RNA chaperone activity is unknown. To investigate RNA annealing and strand displacement by Hfq, we used oligonucleotides that mimic functional sequences within DsrA sRNA and the complementary rpoS mRNA. Hfq accelerated at least 100-fold the annealing of a fluorescently labeled molecular beacon to a 16-nt RNA. The rate of strand exchange between the oligonucleotides increased 80-fold. Therefore, Hfq is very active in both helix formation and exchange. However, high concentrations of Hfq destabilize the duplex by preferentially binding the single-stranded RNA. RNA binding and annealing were completely inhibited by 0.5 M salt. The target site in DsrA sRNA was 1000-fold less accessible to the molecular beacon than an unstructured oligonucleotide, and Hfq accelerated annealing with DsrA only 2-fold. These and other results are consistent with recycling of Hfq during the annealing reaction, and suggest that the net reaction depends on the relative interaction of Hfq with the products and substrates.  相似文献   

14.
In the course of developing a method to purify a single tRNA species efficiently, we have examined hybridization efficiencies between some tRNAs and short oligodeoxyribonucleotide probes both by the filter and solution hybridization methods without denaturants. The hybridization efficiencies varied considerably among probes which are complementary to different regions of the tRNAs, although there was little efficiency variation in the probes toward DNA substrates including the same nucleotide sequence. This efficiency variation was shown to be due to tRNA-specific higher-order structures as well as a hypermodified nucleotide in the anticodon loop. Characterization of the tRNA-probe hybrids by both nondenaturing gel electrophoresis and chemical modification showed the existence of two stable hybridizing states as a function of ionic strength. Our results indicate that RNA molecules with a number of intramolecular base pairings are able to form stable hybrids with complementary sequences under nondenaturing conditions. On the basis of these data, an appropriate probe was designed to successfully purify yeast tRNA(Phe) by making a tRNA(Phe)-probe hybrid, which has a longer retention time in hydroxyapatite high performance liquid chromatography than the tRNA(Phe) itself.  相似文献   

15.
A method has been suggested for the synthesis of conjugates of oligodeoxyribonucleotides with chemical constructs mimicking ribonuclease A active center for directed fragmentation of RNA. The method is based on the sequential addition of linker group, 9-(methylamino)anthracene, to 5' or 3' terminal phosphate of oligonucleotide and then imidazole-containing construct by cycloaddition reaction. The conjugates of oligonucleotides complementary to regions 44-61 (2B-R) and 60-76 (1C-R) of yeast phenylalanine tRNA demonstrated ability to cleave tRNA(Phe) under physiological conditions preferably at the sole phosphodiester bond (C63-A64 for 2B-R and C56-G57 for 1C-R, respectively). The half-time of tRNA(Phe) hydrolysis in the presence of 2B-R conjugate was 30 min at 2B-R concentration of 10 microM and several minutes at conjugate concentration of 50 microM.  相似文献   

16.
Experimental studies of the effects of antisense oligonucleotides on translation of mRNAs in cell-free systems are reviewed. Oligonucleotides complementary to the leader sequences or to the sequence overlapping the initiating codon region of mRNAs inhibit translation of the messengers. In the presence of ribonuclease H, oligodeoxyribonucleotides and their phosphorothioate analogs complementary either to the mentioned mRNA regions or to the mRNA coding sequence suppress the translation due to the RNAs cleavage. This inhibition-enhancing mechanism does not operate in the case of the oligonucleotide analogs--oligonucleoside methylphosphonates and oligonucleotides built of the alpha-nucleosides, since the complexes formed by RNA and these analogs are not substrates of the ribonuclease H. The translation inhibition efficiency is determined by the oligonucleotides lengths and by the availability of the complementary sequence in the mRNA structure. The oligonucleotides inhibitory power can be improved by the coupling to the oligonucleotides of the intercalating groups and the reactive groups.  相似文献   

17.
We report the inhibition of encephalomyocarditis virus (EMCV) RNA translation in cell-free rabbit reticulocyte lysates by antisense oligonucleotides (13-17-base oligomers) complementary to (a) the viral 5' non-translated region, (b) the AUG start codon and (c) the coding sequence. Our results demonstrate that the extent of translation inhibition is dependent on the region where the complementary oligonucleotides bind. Non-complementary and 3'-non-translated-region-specific oligonucleotides had no effect on translation. A significant degree of translation inhibition was obtained with oligonucleotides complementary to the viral 5' non-translated region and AUG initiation codon. Digestion of the oligonucleotide:RNA hybrid by RNase H did not significantly increase translation inhibition in the case of 5'-non-translated-region-specific and initiator-AUG-specific oligonucleotides; in contrast, RNase H digestion was necessary for inhibition by the coding-region-specific oligonucleotide. We propose that (a) 5'-non-translated-region-specific oligonucleotides inhibit translation by affecting the 40S ribosome binding and/or passage to the AUG start codon, (b) AUG-specific oligonucleotides inhibit translation initiation by inhibiting the formation of an active 80S ribosome and (c) the coding-region-specific oligonucleotide does not prevent protein synthesis because the translating 80S ribosome can dislodge the oligonucleotide from the EMCV RNA template.  相似文献   

18.
In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues. This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)(+) RNA accumulation within the nucleus/ nucleolus of wild-type cells. LNA-based probes should be readily applicable to a diverse array of cells and tissue samples.  相似文献   

19.
Dmochowski IJ  Tang X 《BioTechniques》2007,43(2):161, 163, 165 passim
The recent development of caged oligonucletides that are efficiently activated by ultraviolet (UV) light creates opportunities for regulating gene expression with very high spatial and temporal resolution. By selectively modulating gene activity, these photochemical tools will facilitate efforts to elucidate gene function and may eventually serve therapeutic aims. We demonstrate how the incorporation of a photocleavable blocking group within a DNA duplex can transiently arrest DNA polymerase activity. Indeed, caged oligonucleotides make it possible to control many different protein-oligonucleotide interactions. In related experiments, hybridization of a reverse complementary (antisense) oligodeoxynucleotide to target mRNA can inhibit translation by recruiting endogenous RNases or sterically blocking the ribosome. Our laboratory recently synthesized caged antisense oligonucleotides composed of phosphorothioated DNA or peptide nucleic acid (PNA). The antisense oligonucleotide, which was attached to a complementary blocking oligonucleotide strand by a photocleavable linker, was blocked from binding target mRNA. This provided a useful method for photomodulating hybridization of the antisense strand to target mRNA. Caged DNA and PNA oligonucleotides have proven effective at photoregulating gene expression in cells and zebrafish embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号