首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.  相似文献   

2.
The general oxidation mechanism by hypochlorite on starch has been well studied, but the information on the distribution of the oxidation sites within starch granules is limited. This study investigated the locations where the oxidation occurred within corn starch granules varying in amylose content, including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starch (AMC). Oxidized corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The surface-gelatinized remaining granules were separated and studied for structural characteristics including carboxyl content, amylose content, amylopectin chain-length distribution, thermal properties, and swelling properties. Oxidation occurred mostly at the amorphous lamellae. More carboxyl groups were found at the periphery than at the core of starch granules, which was more pronounced in oxidized 70% AMC. More amylose depolymerization from oxidation occurred at the periphery of CC. For WC and CC, amylopectin long chains (>DP 36) were more prone to depolymerization by oxidation. The gelatinization properties as measured by differential scanning calorimetry also supported the changes in amylopectin fine structure from oxidation. Oxidized starches swelled to a greater extent than their unmodified counterparts at all levels of surface removal. This study demonstrates that the locations of oxidation and physicochemical properties of oxidized starches are affected by the molecular arrangement within starch granules.  相似文献   

3.
Sorption of terpenoids (essential oil components) from aqueous solutions by six types of native food starches was studied by capillary gas chromatography. Sorption of volatile substances did not depend on amylose content in starch and specific surface of its granules. The degree of sorption was maximum (86%) for corn starch containing 25–28% amylose and decreased in the following order: tapioca starch (77%) > potato starch (74%) > wheat starch (70%) > high-amylose corn starch (58%) > amylopectin corn starch (57%). Amylopectin corn starch differed from other starches in the mechanism of sorption and selectivity to compounds with various functional groups.  相似文献   

4.
The effects of amylose content on the extent of oxidation and the distribution of carboxyl groups in hypochlorite-oxidized corn starches were investigated. Corn starches including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starches (AMC) were oxidized with NaOCl at three concentrations (0.8%, 2%, and 5%). Carboxyl and carbonyl content of oxidized starches increased with increasing NaOCl concentration. High-AMC (70%) had slightly higher carboxyl and carbonyl contents at 0.8% NaOCl, whereas WC had significantly higher carboxyl and carbonyl contents at 2% and 5% NaOCl levels. Carbohydrate profiles by high-performance size-exclusion chromatography indicate that amylose was more susceptible to depolymerization than amylopectin. Degradation of amylopectin long chains (DP >24) was more pronounced in WC and CC than in AMCs. The crystalline lamellae of WC started to degrade at 2% NaOCl, but those of the other corn starches remained intact even at 5% NaOCl level according to X-ray crystallinity. By using anion-exchange chromatography for separation and size-exclusion chromatography for characterization, carboxyl groups were found to be more concentrated on amylopectin than on amylose, particularly in AMCs. Oxidation decreased gelatinization temperature and enthalpy with WC showing the most decrease and 70% AMC showing the least. The gelatinization enthalpy of 50% AMC decreased significantly faster than those of CC and 70% AMC after 0.8% oxidation. Retrogradation of amylopectin slightly increased after oxidation with increasing oxidation level. The peak viscosities of oxidized WC and CC were higher than those of their native counterparts at 0.8% NaOCl, but this increase was not observed in AMCs. The setback viscosities of 2% NaOCl-oxidized 50% and 70% AMCs were much higher than those of the unmodified counterparts. The extent of oxidation and physicochemical properties of oxidized starches varied greatly with the amylase:amylopectin ratio of corn starches. Amylose was suggested to play an important role in controlling the oxidation efficiency.  相似文献   

5.
Sorption of terpenoids (essential oil components) from aqueous solutions by six types of native food starches was studied by capillary gas chromatography. Sorption of volatile substances did not depend on amylose content in starch and specific surface of its granules. The degree of sorption was maximum (86%) for corn starch containing 25-28% amylose and decreased in the following order: tapioca starch (77%) > potato starch (74%) > wheat starch (70%) > high-amylose corn starch (58%) > amylopectin corn starch (57%). Amylopectin corn starch differed from other starches in the mechanism of sorption and selectivity to compounds with various functional groups.  相似文献   

6.
Pure starches were isolated from white and red sorghum cultivated in Tidikelt, a hyper arid region situated in south Algeria. Amylose content, X-ray pattern and rheological properties of starches were examined. The amylose content in white sorghum starch (27.1%) was slightly higher than that in red sorghum (24.8%). The swelling power and the solubility behavior of both starches were nearly similar below 65 °C. At higher temperatures, starch isolated from the white sorghum cultivar showed higher swelling power and lower solubility index than pigmented sorghum starch. The pasting properties of starches determined by RVA, Rapid Visco Analyser showed different viscosity peaks. Red sorghum starch had a higher value (4731 cP) than white sorghum starch (4093 cP). For both sorghum, X-ray diffractograms exhibit an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity were estimated at 22.72% and 28.91%, respectively, for local white and red sorghum starch. DSC analysis revealed that sorghum starches present higher temperatures at the peak (70.60 and 72.28 °C for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches.The results showed that physicochemical and functional properties of sorghum cultivar starches were influenced by the genotype and the environment.  相似文献   

7.
The effect of sodium chloride on the gelatinization and rheological properties of wheat and potato starches has been studied using differential scanning calorimetry, dynamic mechanical thermal analysis, and electron spin resonance techniques. All samples contained 60% water (w/w wet starch basis) and the salt content ranged from 0 to 16% (g/100 g starch-water). The presence of salt affected the onset (T(o)), peak (T(p)), and end (T(e)) temperatures of gelatinization, gelatinization enthalpy (DeltaH), storage modulus (G'), and rotational mobility coefficient (D(rot)), and the effect differed by salt concentration. 1H-NMR was used in parallel in order to elucidate how salts affect the properties of water in starch suspensions and in aqueous salt solutions according to their position on the Hofmeister series classification. The obtained results suggest that the mechanism of starch gelatinization in salt solutions can be attributed to the effect of solute on water properties and direct polymer-solute interactions. These two effects conflict with one another and result in complex effect patterns depending on the concentration of the salts.  相似文献   

8.
The effect of starch composition and concentration on the rheological properties of starch in a mixed solvent, water–DMSO, was investigated in dynamic shear and extensional mode. High amylose corn starch containing 70% amylose and 30% amylopectin, common corn starch containing 25% amylose and 75% amylopectin, and waxy corn starch containing about 99% amylopectin were used in this study. Concentrations of 2, 4, 6, and 8% (w/v) in 10% water-90% DMSO (v/v) were used for each starch type. An increase in the amylopectin content of starch from 30 to 99% caused a change in behavior from semidilute solution to viscoelastic solid at a concentration of 8% (w/v). At a concentration of 2%, an increase in the amylopectin content of starch from 30 to 99% caused a change from Newtonian to incipient gel-like behavior. Behavior at intermediate concentrations of 4 and 6% (w/v) varied from semidilute to critical gel-like with increasing amylopectin content. A power-law relaxation was observed for all concentrations of common and waxy corn starches with the slope decreasing with increase in concentrations. A 2% waxy corn starch solution displayed extension thinning behavior, while a 2% high amylose corn starch solution displayed Newtonian behavior.  相似文献   

9.
Kong L  Ziegler GR 《Biomacromolecules》2012,13(8):2247-2253
We have demonstrated a method of fabricating pure starch fibers with an average diameter in the order of micrometers. In the present study, correlation between the rheological properties of starch dispersions and the electrospinnability was attempted via the extrapolation of the critical entanglement concentration, which is the boundary between the semidilute unentangled regime and the semidilute entangled regime. Dispersions of high amylose starch containing nominally 80% amylose (Gelose 80) required 1.2-2.7 times the entanglement concentration for effective electrospinning. Besides starch concentration, molecular conformation, and shear viscosity were also of importance in determining the electrospinnability. The rheological properties and electrospinnability of different starches were studied. Hylon VII and Hylon V starches, containing nominally 70 and 50% amylose, respectively, required concentrations of 1.9 and 3.7 times their entanglement concentrations for electrospinning. Only poor fibers were obtained from mung bean starch, which contains about 35% amylose, while starches with even lower amylose contents could not be electrospun.  相似文献   

10.
Lactobacillus amylophilus GV6 fermented a variety of pure and natural starches directly to L(+) lactic acid. Starch to lactic acid conversion efficiency was more than 90% by strain GV6 at low substrate concentrations with all starches. The strain GV6 produced high yields of lactic acid per g of substrate utilized with pure starches such as soluble starch, corn starch, and potato starch, yielding 92–96% at low substrate concentrations in 2 days and 78–89% at high substrate (10%) concentrations in 4–6 days. Strain GV6 also produced high yields of lactic acid per g of substrate utilized with crude starchy substrates such as wheat flour, sorghum flour, cassava flour, rice flour and barley flour yielding 90–93% at low substrate concentrations in 2 days and 80% or more at high substrate concentrations in 6–7 days. Lactic acid yields by L. amylophilus GV6 with pure starches were comparable when low cost crude starchy substrates were used. Lactic acid productivity by strain GV6 is higher than for any other previously reported strains of L. amylophilus.  相似文献   

11.
Effects of added wheat fiber, with different levels and particle sizes, on the physicochemical properties and gel morphology of wheat starch and mung bean starch were investigated, using rapid visco analyzer (RVA), texture analyzer (TPA) and scanning electron microscopy (SEM). Each starch was added with wheat fiber at 10, 20, 30 and 40% (weight basis, g/100g), and different sizes of 60, 100 and 180 mesh, respectively. The peak viscosity (PV) of starches with wheat fiber were higher than the control. Starches had the highest PV with 40%, 60 mesh wheat fiber. The starches with wheat fiber showed higher hardness when compared to the control. Wheat starch and mung bean starch, with 40%, 60 mesh wheat fiber, had the highest hardnesses of 147.78 and 1032.11g, respectively. SEM showed that the dense honeycomb structure of starch gel was diminished with increasing wheat fiber. Additionally, the number of internal pores was reduced, and a large lamellar structure was formed.  相似文献   

12.
《Carbohydrate research》1987,166(2):283-297
Potato and waxy-maize starches were separately modified for 1 h at 65° with 0.36% hydrochloric acid in methanol, ethanol, 2-propanol, and 1-butanol. All of the modified starches were readily soluble in hot water, to give crystal-clear solutions up to a concentration of at least 20% (w/v). The modified granules were studied by light-microscopy and iodine-iodide staining. All of the modified starches retained their granule appearance, although with various degrees of damage that progressively increased from methanol to 1-butanol. Both hydrolysis and alcoholysis occurred, but to different extents in the different alcohols. The highest proportion of alcoholysis occurred in methanol where 50% of the resulting molecules were glycosides, the lowest in 1-butanol where 6% were glycosides. The number-average molecular weights of the modified starches also progressively decreased from 126,670 for the methanol-modified waxy-maize starch to 4,750 for the 1-butanol-modified potato starch. The methanol- and ethanol-modified potato starches were fractionated into amylose and amylopectin components. The 2-propanol- and 1-butanol-modified potato starches gave only an amylopectin component. The amylose components were characterized by gel-permeation chromatography on Bio-Gel A-5m, and the amylopectin components, on Bio-Gels A-150m and A-0.5m. The molecular sizes of the amylose and amylopectin components progressively decreased from methanol- to 1-butanol-modified starches. Furthermore, the polymodal composition of the amylopectin component was decreased to give a more homogeneous product. Waxy-maize starch was modified in methanol and 2-propanol and gave products that were of lower molecular size and more homogeneous than the polymodal native starch. It is shown that the differential effect of the different alcohols on the modification of the starch granules is produced by effecting different concentrations of acid inside the granule, where hydrolysis occurs in the 10–12% of water contained in the granule. It is postulated that 2-propanol and 1-butanol dissolve the double-helical, crystalline regions in the starch granule to give different types of products under otherwise identical conditions of modification.  相似文献   

13.
The gelatinization of waxy rice, regular rice, and potato starch suspensions (66% w/w moisture) was investigated by real-time small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) during heating and by fast ramp differential scanning calorimetry (DSC). The high-angle tail of the SAXS patterns suggested the transition from surface to mass fractal structures in the DSC gelatinization range. Amylose plays a major role in determining the dimensions of the self-similar structures that develop during this process as the characteristic power-law scattering behavior extends to lower scattering angles for regular than for waxy starches. Crystallinity of A-type starches is lost in the temperature region roughly corresponding to the DSC gelatinization range. At the end of the gelatinization endotherm, the B-type potato starch showed residual crystallinity (WAXD), while SAXS-patterns exhibited features of remaining lamellar stacks. Results indicate that the melting of amylopectin crystallites during gelatinization is accompanied by the (exothermic) formation of amorphous networks.  相似文献   

14.
木薯淀粉在一定温度下用乙醇和碱的混合液处理,用HCl中和,醇洗,最后在50℃左右的烘箱中干燥6h,X射线衍射结果表明经碱醇处理的木薯淀粉其微晶、亚微晶、非晶的组成发生了变化。不同的处理条件,结晶组成的变化不同。较低浓度的醇,较高浓度的碱或较高反应温度得到非晶化程度高一些的淀粉。在偏光显微镜下观察到较少的偏光十字,表明淀粉的结晶结构发生了变化。  相似文献   

15.
The microstructure, kinetics of gelation, and rheological properties have been investigated for gels of nonamidated pectin (C30), amidated pectin (G), and saponified pectin (sG) at different pH values, both with and without sucrose. The low-methoxyl (LM) pectin gels were characterized in the presence of Ca(2+) by oscillatory measurements and transmission electron microscopy (TEM). The appearance of the gel microstructure varied with the pH, the gel structure being sparse and aggregated at pH 3 but dense and somewhat entangled at pH 7. During gel formation of pectins G and C30 at pH 3 there was a rapid increase in G' initially followed by a small increase with time. At pH 7 G' increased very rapidly at first but then remained constant. The presence of sucrose influenced neither the kinetic behavior nor the microstructure of the gels but strongly increased the storage modulus. Pectins G and C30 showed large variations in G' at pH values 3, 4, 5, and 7 in the presence of sucrose, and the maximum in G' in the samples occurred at different pH values. Due to its high Ca(2+) sensitivity, pectin sG had a storage modulus that was about 50 times higher than that of its mother pectin G at pH 7.  相似文献   

16.
Corn starches with different amylose/amylopectin ratios (waxy 0/100, normal corn 23/77, Gelose 50 50/50, Gelose 80 80/20) were annealed at below their gelatinization temperatures in excess water. The effects of annealing on the gelatinization and microstructures of the starches were studied using DSC, XRD and a microscope equipped with both normal and polarized light. In addition, a high-pressure DSC pan was used to study the effects of high-temperature annealing on the multiphase transitions of starches with different water contents. The granular size of the starches increased after the annealing process, but the size variation rates were different, with higher amylopectin contents resulting in a higher diameter growth rates and final accretion ratios. DSC results showed that annealing increased the gelatinization enthalpy of the amylose-rich starches. The increased enthalpy was mainly attributed to endotherm G – there were no significant changes to endotherms M1, M2 or Z – indicating that annealing mainly affected the helical length of shorter or sub-optional amylopectins, in particular the amylopectin in amylose-rich starches. The XRD traces of all starches after annealing remained unchanged.  相似文献   

17.
The purpose of this study was to examine the viscoelastic properties of topical creams containing various concentrations of microcrystalline cellulose and sodium carboxymethyl cellulose (Avicel(R) CL-611) as a stabilizer. Avicel CL-611 was used at 4 different levels (1%, 2%, 4%, and 6% dispersion) to prepare topical creams, and hydrocortisone acetate was used as a model drug. The viscoelastic properties such as loss modulus (G"), storage modulus (G'), and loss tangent (tan delta) of these creams were measured using a TA Instruments AR 1000 Rheometer and compared to a commercially available formulation. Continuous flow test to determine the yield stress and thixotropic behavior, and dynamic mechanical tests for determining the linear viscosity time sweep data, were performed. Drug release from the various formulations was studied using an Enhancer TM Cell assembly. Formulations containing 1% and 2% Avicel CL-611 had relative viscosity, yield stress, and thixotropic values that were similar to those of the commercial formulation. The elastic modulus (G') of the 1% and 2% formulation was relatively high and did not cross the loss modulus (G"), indicating that the gels were strong. In the commercial formulation, G' increased after preshearing and broke down after 600 seconds. The strain sweep tests showed that for all formulations containing Avicel CL-611, the G' was above G" with a good distance between them. The gel strength and the predominance of G' can be ranked 6% > 4% > 2%. The strain profiles for the 1% and 2% formulations were similar to those of the commercial formulation. The delta values for the 1% and 2% formulations were similar, and the formulations containing 4% Avicel CL-611 had lower delta values, indicating greater elasticity. Drug release from the commercial preparation was fastest compared to the formulations prepared using Avicel CL-611, a correlation with the viscoelastic properties. It was found that viscoelastic data, especially the strain sweep profiles of products containing Avicel CL-611 1% and 2%, correlated with the commercial formulation. Rheological tests that measure the viscosity, yield stress, thixotropic behavior, other oscillatory parameters such as G' and G" are necessary tools in predicting performance of semisolids.  相似文献   

18.
Native new cocoyam starch (nNCS) was subjected to annealing (aNCS) and heat moisture treatment at 18% moisture level (h18NCS), 21% moisture level (h21NCS), 24% moisture level (h24NCS) and 27% moisture level (h27NCS) as hydrothermal treatments. Scanning electron and light microscopy revealed round and polygonal shapes with sizes ranging from 15 to 40 μm for native and modified starches. nNCS showed “A” pattern X-ray diffraction and no significant differences were observed in the X-ray pattern of the modified starches. Swelling power and solubility reduced following heat moisture treatment. At all pH studied (2–12), unmodified new cocoyam starch exhibited higher swelling capacity and solubility than the modified derivatives. Hydrothermal modifications improved water absorption capacity but reduced oil absorption capacity. Pasting temperature of native starch shifted to higher values following annealing and heat moisture treatment. Hot paste viscosity (Hv), viscosity after 30 min holding at 95 °C (Hv30) and cold paste viscosity (Cv) reduced after annealing and heat moisture treatment. The result also indicates that hydrothermal treatments reduced the tendency for setback. As the number of days of storage of starch paste increased from 1 to 10, light transmittance of all the starches reduced but marked reduction of light transmittance was observed in native starch. DSC studies revealed increase in gelatinization temperature following annealing and heat moisture treatment. Starch hydrothermal modifications reduced retrogradation as enthalpies of regelatinization reduced following modifications. The regelatinization peak in the second day scanning shifted to lower temperature than the gelatinization peak in first run heating DSC curve for all samples. The regelatinization peak also became larger and shifted to higher temperature range when the storage days increased from 2 to 7.  相似文献   

19.
Ways to simulate the making of clear noodles from mung bran starch were investigated by studying the molecular structures of mung bean and tapioca starches. Scanning electron micrographs showed that tapioca starch granules were smaller than those of mung bean starch. X-ray diffraction patterns of mung bean and tapioca starch were A- and CA-patterns, respectively. Iodine affinity studies indicated that mung bean starch contained 37% of apparent amylose and tapioca starch contained 24%. Gel permeation chromatograms showed that mung bean amylopectin had longer peak chain-length of long-branch chains (DP 40) than that of tapioca starch (DP 35) but shorter peak chain-length of short-branch chains (DP 16) than that of tapioca starch (DP 21). P-31 n.m.r. spectroscopy showed that both starches contained phosphate monoesters, but only mung bean starch contained phospholipids. Physical properties, including pasting viscosity, gel strength, and thermal properties (gelatinization), were determined. The results of the molecular structure study and physical properties were used to develop acceptable products using mixtures of cross-linked tapioca and high-amylose maize starches. Tapioca starch was cross-linked by sodium trimetaphosphate (STMP) with various reaction times, pH values, and temperatures. The correlation between those parameters and the pasting viscosity were studied using a visco/amylograph. Starches, cross-linked with 0.1% STMP, pH 11.0, 3.5 h reaction time at 25, 35, and 45°C (reaction temperature), were used for making noodles. High-amylose maize starch (70% amylose) was mixed at varying ratios (9, 13, 17, 28, 37, and 44%) with the cross-linked tapioca starches. Analysis of the noodles included: tensile strength, water absorption, and soluble loss. Noodle sensory properties were evaluated using trained panelists. Noodles made from a mixture of cross-linked tapioca starch and 17% of a high-amylose starch were comparable to the clear noodles made from mung bean starch.  相似文献   

20.
The purpose of this study was to examine the inhibitory effects of resistant starch on postprandial glycaemic response in obese dogs. The changes in blood glucose concentrations and glycaemic index (GI) were chronologically determined after the administration of resistant and normal starches by nasal feeding. Resistant starch contained indigestible dextrin (IDD) and β-cyclic dextrin (β-CD). Soluble starch (SS) served as a control starch. Glucose concentrations reached their maximum 15 min after the administration of SS solutions, and decreased gradually during the experimental period. In contrast, after the administration of IDD solutions, increased glucose concentrations rapidly decreased to the initial values. After the administration of β-CD solutions, glucose concentrations remained unchanged during this study. GI levels remained constant in the following order: β-CD < IDD < SS. GI levels of dogs receiving IDD and β-CD solutions were significantly lower as compared with those animals receiving SS solutions. In this study, nasal tube feeding was an effective method for evaluating glycaemic responses to various starches accurately. The present data revealed that resistant starches were useful materials in controlling nutritionally glucose concentrations in obese dogs. These results raise the possibility that resistant starches are valuable for dietetic treatment of diabetes and obesity in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号