首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Héricourt F  Jupin I 《FEBS letters》1999,464(3):148-152
Using a PCR-based approach, we have isolated two Arabidopsis thaliana cDNA clones (alpha1 and alpha2) encoding the alpha-subunit of translation elongation factor 1B (eEF1Balpha). They encode open reading frames of 228 and 224 amino acids respectively, with extensive homology to eEF1Balpha subunits from different organisms, particularly in the C-terminal half of the protein. They both lack a conserved phosphorylation site that has been implicated in regulating nucleotide exchange activity. Using a plasmid shuffling experiment, we demonstrated that both alpha1 and alpha2 clones are able to complement a mutant yeast strain deficient for the eEF1Balpha subunit. This provides evidence that Arabidopsis encodes at least two functional isoforms of this subunit, termed eEF1Balpha1 and eEF1Balpha2. A third cDNA clone was isolated that appeared to result from an alternative splicing event of the eEF1Balpha1 gene.  相似文献   

2.
The GTP-bound form of the trimeric eukaryotic translation initiation factor 2 (eIF2) transfers aminoacylated initiator methionyl tRNA onto the 40S ribosome. We have solved with solution NMR the structure of the alpha subunit of human eIF2 (heIF2alpha). The protein consists of two domains that are mobile relative to each other. The N-terminal domain has an S1-type oligonucleotide/oligosaccharide binding-fold subdomain and an alpha-helical subdomain. The C-terminal domain adopts an alphabeta-fold very similar to the C-terminal domain of elongation factor (eEF) 1Balpha, the guanine-nucleotide exchange factor for eEF1A. The structural and functional similarities found between eIF2alpha/eIF2gamma and eEF1Balpha/eEF1A suggest a model for the interaction of eIF2alpha with eIF2gamma, and eIF2 with Met-tRNAiMet. It further indicates a previously unrecognized evolutionary lineage of eIF2alpha/gamma from the functionally related elongation factor eEF1Balpha/eEF1A complex.  相似文献   

3.
The entire mouse cDNA sequence for type XIV collagen was determined using overlapping PCR products. The 6456 nucleotide (nt) cDNA sequence contains a 5391-nt open reading frame encoding 1797 amino acid residues. The amino terminus has a 28-residue signal peptide that is followed by the mature polypeptide of 1769 amino acid residues with a calculated molecular mass of 193.2 kDa. The mouse alpha1(XIV) collagen chain is predicted to contain all the structural domains described for the polypeptide in chicken and human. These include fibronectin type III repeats, von Willebrand factor A domains, thrombospondin-N-terminal-like domains and two triple-helical domains similar to those of other collagen family members. The amino acid residue sequence of human alpha1(XIV) collagen showed an overall identity of 74% to the chicken sequence and 88% to the human sequence. The entire mouse genomic structure has been determined and is made up of 48 exons. Alternatively spliced forms of mouse type XIV, collagen were not identified corresponding to the findings for the human form.  相似文献   

4.
The entire mouse cDNA sequence for type XIV collagen was determined using overlapping PCR products. The 6456 nucleotide (nt) cDNA sequence contains a 5391-nt open reading frame encoding 1797 amino acid residues. The amino terminus has a 28-residue signal peptide that is followed by the mature polypeptide of 1769 amino acid residues with a calculated molecular mass of 193.2 kDa. The mouse alpha1(XIV) collagen chain is predicted to contain all the structural domains described for the polypeptide in chicken and human. These include fibronectin type III repeats, von Willebrand factor A domains, thrombospondin-N-terminal-like domains and two triple-helical domains similar to those of other collagen family members. The amino acid residue sequence of human alpha1(XIV) collagen showed an overall identity of 74% to the chicken sequence and 88% to the human sequence. The entire mouse genomic structure has been determined and is made up of 48 exons. Alternatively spliced forms of mouse type XIV, collagen were not identified corresponding to the findings for the human form.  相似文献   

5.
The crystal structure of the N-terminal 219 residues (domain 1) of the conserved eukaryotic translation elongation factor 1Bgamma (eEF1Bgamma), encoded by the TEF3 gene in Saccharomyces cerevisiae, has been determined at 3.0 A resolution by the single wavelength anomalous dispersion technique. The structure is overall very similar to the glutathione S-transferase proteins and contains a pocket with architecture highly homologous to what is observed in glutathione S-transferase enzymes. The TEF3-encoded form of eEF1Bgamma has no obvious catalytic residue. However, the second form of eEF1Bgamma encoded by the TEF4 gene contains serine 11, which may act catalytically. Based on the x-ray structure and gel filtration studies, we suggest that the yeast eEF1 complex is organized as an [eEF1A.eEF1Balpha.eEF1Bgamma]2 complex. A 23-residue sequence in the middle of eEF1Bgamma is essential for the stable dimerization of eEF1Bgamma and the quaternary structure of the eEF1 complex.  相似文献   

6.
Elongation factor 1 (EF-1) from the silk gland of Bombyx mori consists of alpha-, beta-, gamma-, and delta-subunits. EF-1alpha GTP catalyzes the binding of aminoacyl-tRNA to ribosomes concomitant with the hydrolysis of GTP. EF-1betagammadelta catalyzes the exchange of EF-1alpha-bound GDP for exogenous GTP and stimulates the EF-1alpha-dependent binding of aminoacyl-tRNA to ribosomes. EF-1gamma cDNA, which contains an open reading frame (ORF) encoding a polypeptide of 423 amino acid residues, was amplified and cloned by PCR from a silk gland cDNA library. The calculated molecular mass and predicted pI of the product were 48,388 Da and 5.84, respectively. The silk gland EF-1gamma shares 67.3% amino acid identity with Artemia salina EF-lgamma. The N-terminal domain (amino acid residues 1-211) of silk gland EF-lgamma is 29.3% identical to maize glutathione S-transferase. We demonstrated that silk gland EF-lgamma bound to glutathione Sepharose, suggesting that the N-terminal domain of EF-1gamma may have the capacity to bind to glutathione.  相似文献   

7.
The multisubunit elongation factor 1 (eEF1) is required for the elongation step of eukaryotic protein synthesis. The eEF1 complex consists of four subunits: eEF1A, a G-protein that shuttles aminoacylated tRNAs to the ribosome; eEF1Balpha and eEF1Bbeta, two guanine nucleotide exchange factors, and eEF1Bgamma. Although its exact function remains unknown, this latter subunit is present in all eukaryotes. Recombinant human eEF1Bgamma has been purified and shown to consist of two independent domains. We have utilized high resolution NMR to determine the three-dimensional structure of the 19 kDa C-terminal fragment (domain 2). The structure consists of a five-stranded anti-parallel beta-sheet surrounded by alpha-helices and resembles a contact lens. Highly conserved residues are mainly located on the concave face, suggesting thereby that this side of the molecule might be involved in some biologically relevant interface(s). Although the isolated domain 2 appears to be mostly monomeric in solution, biochemical and structural data indicate a potential homodimer. The proposed dimer model can be further positioned within the quaternary arrangement of the whole eEF1 assembly.  相似文献   

8.
A cDNA clone, IWU-1, was cloned from human bone marrow. Its putative open reading frame encoded a protein of 115 amino acids with a calculated molecular mass of 12.9 kDa. The deduced amino acid sequence exhibited high homology (>68%) to members of the ATP1gamma1/PLM/MAT8 family of single transmembrane proteins, primarily in the region containing the putative transmembrane domain. The sequence at the amino-terminal side exhibited high homology (>61%) to the cytoplasmic region of the angiotensin II type 1 receptors.  相似文献   

9.
Two cDNA clones have been isolated, from a bovine lymphosarcoma library, that encode the alpha-subunit of eukaryotic initiation factor 2 (eIF-2 alpha). The predicted 315 amino acid sequence showed more than 99% amino acid identity with rat and human eIF-2 alpha. Galactose-regulated expression of a full length bovine eIF-2 alpha cDNA in yeast resulted in the synthesis of a polypeptide of the predicted molecular mass (36 kDa). Furthermore, the expressed polypeptide cross-reacted with an antibody raised against rabbit eIF-2 alpha confirming the identity of the cDNA.  相似文献   

10.
A full-length cDNA clone coding for a cytoplasmically-synthesized subunit of complex I from Neurospora crassa (apparent molecular mass of 29 kDa) was isolated. DNA sequencing revealed an open reading frame coding for a protein containing 201 amino acids. A molecular mass of 21323 Da was calculated. The precursor polypeptide was efficiently expressed in vitro and imported into isolated mitochondria. It is synthesized without a cleavable signal sequence and needs a membrane potential in order to bind to the mitochondrial membranes.  相似文献   

11.
Aspergillus fumigatus is a recognised human pathogen, especially in immunocompromised individuals. The availability of the annotated A. fumigatus genome sequence will significantly accelerate our understanding of this organism. However, limited information is available with respect to the A. fumigatus proteome. Here, both a direct proteomic approach (2D-PAGE and MALDI-MS) and a sub-proteomic strategy involving initial glutathione affinity chromatography have been deployed to identify 54 proteins from A. fumigatus primarily involved in energy metabolism and protein biosynthesis. Furthermore, two novel eukaryotic elongation factor proteins (eEF1Bgamma), termed ElfA and B have been identified and phylogenetically confirmed to belong to the eEF1Bgamma class of GST-like proteins. One of these proteins (ElfA) has been purified to homogeneity, identified as a monomeric enzyme (molecular mass=20 kDa; pI=5.9 and 6.5), and found to exhibit glutathione transferase activity specific activities (mean+/-standard deviation, n=3) of 3.13+/-0.27 and 3.43+/-1.0 micromol/min/mg, using CDNB and ethacrynic acid, respectively. Overall, these data highlight the importance of new approaches to dissect the proteome of, and elucidate novel functions within, A. fumigatus.  相似文献   

12.
The crystal structure of a complex between the protein biosynthesis elongation factor eEF1A (formerly EF-1alpha) and the catalytic C terminus of its exchange factor, eEF1Balpha (formerly EF-1beta), was determined to 1.67 A resolution. One end of the nucleotide exchange factor is buried between the switch 1 and 2 regions of eEF1A and destroys the binding site for the Mg(2+) ion associated with the nucleotide. The second end of eEF1Balpha interacts with domain 2 of eEF1A in the region hypothesized to be involved in the binding of the CCA-aminoacyl end of the tRNA. The competition between eEF1Balpha and aminoacylated tRNA may be a central element in channeling the reactants in eukaryotic protein synthesis. The recognition of eEF1A by eEF1Balpha is very different from that observed in the prokaryotic EF-Tu:EF-Ts complex. Recognition of the switch 2 region in nucleotide exchange is, however, common to the elongation factor complexes and those of Ras:Sos and Arf1:Sec7.  相似文献   

13.
Trypanothione is a thiol unique to the Kinetoplastida and has been shown to be a vital component of their antioxidant defenses. However, little is known as to the role of trypanothione in xenobiotic metabolism. A trypanothione S-transferase activity was detected in extracts of Leishmania major, L. infantum, L. tarentolae, Trypanosoma brucei, and Crithidia fasciculata, but not Trypanosoma cruzi. No glutathione S-transferase activity was detected in any of these parasites. Trypanothione S-transferase was purified from C. fasciculata and shown to be a hexadecameric complex of three subunits with a relative molecular weight of 650,000. This enzyme complex was specific for the thiols trypanothione and glutathionylspermidine and only used 1-chloro-2,4-dinitrobenzene from a range of glutathione S-transferase substrates. Peptide sequencing revealed that the three components were the alpha, beta, and gamma subunits of ribosomal eukaryotic elongation factor 1B (eEF1B). Partial dissociation of the complex suggested that the S-transferase activity was associated with the gamma subunit. Moreover, Cibacron blue was found to be a tight binding inhibitor and reactive blue 4 an irreversible time-dependent inhibitor that covalently modified only the gamma subunit. The rate of inactivation by reactive blue 4 was increased more than 600-fold in the presence of trypanothione, and Cibacron blue protected the enzyme from inactivation by 1-chloro-2,4-dinitrobenzene, confirming that these dyes interact with the active site region. Two eEF1Bgamma genes were cloned from C. fasciculata, but recombinant C. fasciculata eEF1Bgamma had no S-transferase activity, suggesting that eEF1Bgamma is unstable in the absence of the other subunits.  相似文献   

14.
Two cDNA clones for the barley photosystem I polypeptide which migrates with an apparent molecular mass of 9.5 kDa on SDS-polyacrylamide gels have been isolated using antibodies and an oligonucleotide probe. The determined N-terminal amino acid sequence for the mature polypeptide confirms the identification of the clones. The 644 base-pair sequence of one of the clones contains one large open reading frame coding for a 14 882 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10 193 Da. The hydropathy plot of the polypeptide shows one membrane-spanning region with a predicted -helix secondary structure. The gene for the 9.5 kDa polypeptide has been designated PsaH.  相似文献   

15.
A cDNA clone encoding a 10.8 kDa photosystem I polypeptide of barley   总被引:2,自引:0,他引:2  
A cDNA clone encoding the barley photosystem I polypeptide which migrates with an apparent molecular mass of 16 kDa on SDS-polyacrylamide gels has been isolated. The 634 bp sequence of this clone has been determined and contains one large open reading frame coding for a 15,457 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10,821 Da. The amino acid sequence of the transit peptide indicates that the polypeptide is routed towards the stroma side of the thylakoid membrane. The hydropathy plot of the polypeptide shows no membrane-spanning regions.  相似文献   

16.
17.
Cloned cDNAs encoding both subunits of Drosophila melanogaster casein kinase II have been isolated by immunological screening of lambda gt11 expression libraries, and the complete amino acid sequence of both polypeptides has been deduced by DNA sequencing. The alpha cDNA contained an open reading frame of 336 amino acid residues, yielding a predicted molecular weight for the alpha polypeptide of 39,833. The alpha sequence contained the expected semi-invariant residues present in the catalytic domain of previously sequenced protein kinases, confirming that it is the catalytic subunit of the enzyme. Pairwise homology comparisons between the alpha sequence and the sequences of a variety of vertebrate protein kinase suggested that casein kinase II is a distantly related member of the protein kinase family. The beta subunit was derived from an open reading frame of 215 amino acid residues and was predicted to have a molecular weight of 24,700. The beta subunit exhibited no extensive homology to other proteins whose sequences are currently known.  相似文献   

18.
Vacuolar proton-translocating ATPases (V-ATPase) are multisubunit enzyme complexes located in the membranes of eukaryotic cells regulating cytoplasmic pH. So far, nothing is known about the genomic organization and chromosomal location of the various subunit genes in higher eukaryotes. Here we describe the isolation and analysis of a cDNA coding for the 54- and 56-kDa porcine V-ATPase subunit alpha and beta isoforms. We have determined the genomic structure of the V-ATPase subunit gene spanning at least 62 kb on Chromosome (Chr) 4q14-q16. It consists of 14 exons with sizes ranging from 54 bp to 346 bp, with a non-coding first exon and an alternatively spliced seventh exon leading to two isoforms. The 5′ end of the V-ATPase cDNA was isolated by RACE-PCR. The V-ATPase alpha isoform mRNA, lacking the seventh exon, has an open reading frame of 1395 nucleotides encoding a hydrophilic protein of 465 amino acids with a calculated molecular mass of 54.2 kDa and a pI of 7.8, whereas the beta isoform has a length of 1449 nucleotides encoding a protein of 483 amino acids with a calculated molecular mass of 55.8 kDa. Amino acid and DNA sequence comparison revealed that the porcine V-ATPase subunit exhibits a significant homology to the VMA13 subunit of Saccharomyces cerevisiae V-ATPase complex and V-ATPase subunit of Caenorhabditis elegans. Received: 14 May 1998 / Accepted: 20 October 1998  相似文献   

19.
A full length cDNA sequence for a barley grain lipoxygenase was obtained. It includes a 5′ untranslated region of 69 nucleotides, an open reading frame of 2586 nucleotides encoding a protein of 862 amino acid residues and a 3′ untranslated region of 142 nucleotides. The molecular mass of the encoded polypeptide was calculated to be 96.392. Its amino acid sequence shows a high homology with that of other plant lipoxygenases identified to date.  相似文献   

20.
The epoxide hydrolase (EH)-encoding gene (EPH1) from the basidiomycetous yeast Xanthophyllomyces dendrorhous was isolated. The genomic sequence has a 1,236-bp open reading frame which is interrupted by eight introns that encode a 411-amino-acid polypeptide with a calculated molecular mass of 46.2 kDa. The amino acid sequence is similar to that of microsomal EH and belongs to the alpha/beta hydrolase fold family. The EPH1 gene was not essential for growth of X. dendrorhous in rich medium under laboratory conditions. The Eph1-encoding cDNA was functionally expressed in Escherichia coli. A sixfold increase in specific activity was observed when we used resting cells rather than X. dendrorhous. The epoxides 1,2-epoxyhexane and 1-methylcyclohexene oxide were substrates for both native and recombinant Eph1. Isolation and characterization of the X. dendrorhous EH-encoding gene are essential steps in developing a yeast EH-based epoxide biotransformation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号